Low-cost, dual-band, handset antennas for LEOS communications

Author(s):  
J. McLean ◽  
G. Crook ◽  
S. Mikuteit
Keyword(s):  
Low Cost ◽  
Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2715
Author(s):  
Ming-An Chung ◽  
Chih-Wei Yang

The article mainly presents that a simple antenna structure with only two branches can provide the characteristics of dual-band and wide bandwidths. The recommended antenna design is composed of a clockwise spiral shape, and the design has a gradual impedance change. Thus, this antenna is ideal for applications also recommended in these wireless standards, including 5G, B5G, 4G, V2X, ISM band of WLAN, Bluetooth, WiFI 6 band, WiMAX, and Sirius/XM Radio for in-vehicle infotainment systems. The proposed antenna with a dimension of 10 × 5 mm is simple and easy to make and has a lot of copy production. The operating frequency is covered with a dual-band from 2000 to 2742 MHz and from 4062 to beyond 8000 MHz and, it is also demonstrated that the measured performance results of return loss, radiation, and gain are in good agreement with simulations. The radiation efficiency can reach 91% and 93% at the lower and higher bands. Moreover, the antenna gain can achieve 2.7 and 6.75 dBi at the lower and higher bands, respectively. This antenna design has a low profile, low cost, and small size features that may be implemented in autonomous vehicles and mobile IoT communication system devices.


2019 ◽  
Vol 18 (7) ◽  
pp. 1337-1341 ◽  
Author(s):  
Fei Shen ◽  
Chaoyi Yin ◽  
Kai Guo ◽  
Shaomeng Wang ◽  
Yubin Gong ◽  
...  
Keyword(s):  
Low Cost ◽  

2017 ◽  
Vol 16 ◽  
pp. 2106-2109 ◽  
Author(s):  
Ruyuan Deng ◽  
Shenheng Xu ◽  
Fan Yang ◽  
Maokun Li

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Muhammad Tauseef Asim ◽  
Mushtaq Ahmed

A dual layer periodically patterned metamaterial inspired antenna on a low cost FR4 substrate is designed, simulated, fabricated, and tested. The eigenmode dispersion simulations are performed indicating the left handed metamaterial characteristics and are tunable with substrate permittivity. The same metamaterial unit cell structure is utilized to fabricate a metascreen. This metascreen is applied below the proposed metamaterial antenna and next used as superstrate above a simple patch to study the effects on impedance bandwidth, gain, and radiation patterns. The experimental results of these antennas are very good and closely match with the simulations. More importantly, the resonance for the proposed metamaterial antenna with metascreen occurs at the left handed (LH) eigenfrequency of the metamaterial unit cell structure. The measured −10 dB bandwidths are 14.56% and 22.86% for the metamaterial antenna with single and double metascreens, respectively. The metascreens over the simple patch show adjacent dual band response. The first and second bands have measured −10 dB bandwidths of 9.6% and 16.66%. The simulated peak gain and radiation efficiency are 1.83 dBi and 74%, respectively. The radiation patterns are also very good and could be useful in the UWB wireless applications.


Sign in / Sign up

Export Citation Format

Share Document