Radiation Performance of Interline CCD Arrays

Author(s):  
Dennis A. Thompson ◽  
Bryan C. Fodness ◽  
Paul P. K. Lee
Keyword(s):  
1997 ◽  
Vol 479 ◽  
Author(s):  
V. Dentan ◽  
P. Feneyrou ◽  
F. Soyer ◽  
M. Vergnolle ◽  
P. Le Barny ◽  
...  

AbstractWe study in detail the linear and nonlinear optical properties of a heavy metal substituted naphthalocyanine reverse saturable absorber (RSA). The excited states involved in the RSA process under nanosecond pulsed laser excitation in the visible are fully characterized. We then demonstrate that this material can be used as an efficient optical limiter for protecting silicium CCD arrays from destruction due to nanosecond-pulsed laser irradiation in the visible.


1997 ◽  
Vol 165 ◽  
pp. 561-566
Author(s):  
M. Yoshizawa ◽  
K. Sato ◽  
J. Nishikawa ◽  
T. Fukushima ◽  
M. Miyamoto

AbstractThe projects LIGHT and MIRA are the space-borne and ground-based optical/Infrared-interferometer projects of the National Astronomical Observatory of Japan. The contents of each project are gradually developing, and the descriptions given below are the preliminary ones studied at the present time.LIGHT (Light Interferometer satellite for the studies of Galactic Halo Tracers) is a scanning astrometric satellite for stellar and galactic astronomy planned to be launched between 2007 and 2010 by a M-V launcher of ISAS, Japan. Two sets of Fizeau-type 40cm-pupil interferometers with 1 m baseline are the basic structure of the satellite optics. The multi-color (U, B, V, R, I, and K) CCD arrays are planned to be used in the focal plane of the interferometer, optimized for detecting the precise locations of fringe patterns. LIGHT is expected to observe the parallaxes and proper motions of nearly a hundred million stars up to 18th visual (15thK-band) magnitude with the precision better than 0.1 milli-arcsecond (about 50 microarcsecond in V-band and 90 micro-arcsecond in K-band) in parallaxes and better than 0.1 milli-arcsecond per year in proper motions, as well as the precise photometric characteristics of the observed stars. Almost all of the giant and supergiant stars belonging to the disk and halo components of our Galaxy within 10 to 15 kpc from the sun will be observed by LIGHT to study the most fundamental structure and evolution of the Galaxy. LIGHT will become a precursor of a more sophisticated future astrometric interferometer satellite like GAIA (Lindegren and Perryman, 1996).


2000 ◽  
Vol 6 (S2) ◽  
pp. 732-733
Author(s):  
S.A. Hiller ◽  
B. Kabius ◽  
W. Probst ◽  
H. Tröster ◽  
M. Trendelenburg ◽  
...  

Excellent linearity and high sensitivity have made SSCs the ideal image detector for almost every TEM application. Their ability to make high quality digital images available within fraction of seconds for further evaluation and processing in a PC, have made them a non-dispensable accessory for any modern TEM. However, despite their excellent characteristics, SSCs provide a restricted number of individual image points in respect to a negative, what is considered to be the main disadvantage of this detector. To compensate for this, CCDs with 2048x2048 pixel are available since some time. SSCs using these 2kx2k CCD arrays not only provide 4 times the pixel number but also offer a lot more options people have waiting for: e. g. highly resolved low-dose or ESI images with significantly improved signal to noise ratio, or higher resolved images for diffraction analysis and holographic reconstruction.


1984 ◽  
Vol 78 ◽  
pp. 549-562 ◽  
Author(s):  
J.R.P. Angel

AbstractThe full potential of the next generation of larger telescopes will be realized only if they have well instrumented large fields of view. Scientific problems for which very large ground-based optical telescopes will be of most value often will need surveys to very deep limits with imaging and slitless spectroscopy, followed by spectroscopy of faint objects taken many at once over the field. Improved instruments and detectors for this purpose are being developed. Remotely positioned fibers allow the coupling of light from many objects in the field to the spectrograph slit. CCD arrays, operated in the TDI or drift scan mode, will make large area detectors of high efficiency that may supercede photographic plates. An ideal telescope optical design should be based on a fast parabolic primary, have a field of at least 1° with achromatic images < 0.25 arcseconds and have provision for dispersive elements to be used for slitless spectroscopy and compensation of atmospheric dispersion over the full field. A good solution for a general purpose telescope that can satisfy these needs is given by a three element refractive corrector at a fast Cassegrain focus. A specialized telescope dedicated to sky surveys, with better image quality and higher throughput than presently available, might be built as a scaled up Schmidt with very large photographic plates. Better performance in most areas should be obtained with a large CCD mosaic detector operated in the drift scan mode at a telescope with a 2-mirror reflecting corrector.


1998 ◽  
Vol 6 (6) ◽  
pp. 8-12
Author(s):  
Rob Sareen

Detection of characteristic x-rays is a fascinating and challenging subject. From its early beginnings with gas proportional counters it has evolved, like many branches of technology, into the use of a variety of semiconductors.The lithium compensated silicon detector [Si(Li)] has been the predominant measuring tool over the last two decades, in the last five years, increasing numbers of high purity germanium detectors (HPG) have appeared and more recently a plethora of new materials and concepts are seeing a successful introduction. Among these newer materials are compound semiconductors like mercuric iodide, cadmium telluride, cadmium zinc telluride, gallium arsenide, lead iodide, indium phosphide and diamond. Among the new concepts are Bolometers, Transition Edge Detectors, Drift Detectors, PIN Diodes, CCD arrays and PN CCD arrays.


2002 ◽  
Vol 394 (3) ◽  
pp. 1077-1091 ◽  
Author(s):  
H. Wöhl ◽  
A. Kučera ◽  
J. Rybák ◽  
A. Hanslmeier
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document