Hydrogen Flow Rate Control of a Proton Exchange Membrane Electrolyzer

Author(s):  
Damien Guilbert ◽  
Burin Yodwong ◽  
Wattana Kaewmanee ◽  
Matheepot Phattanasak ◽  
Melika Hinaje
2020 ◽  
Author(s):  
Peng Cheng ◽  
Chasen Tongsh ◽  
Jinqiao Liang ◽  
Zhi Liu ◽  
Qing Du ◽  
...  

Abstract In this study, an experimental study has been performed to investigate the effect of in-plane distribution of Pt and Nafion in membrane electrode assembly (MEA) on proton exchange membrane (PEM) fuel cell. Two types of MEAs, such as the gradient and uniform distributions of Pt catalyst and Nafion, are compared under various operating conditions including cathode flow rate, MEA preparation method, Pt loading and relative humidity (RH). The catalyst ink is sprayed onto Nafion membrane or gas diffusion layer (GDL) through a pneumatic automatic spraying device manufactured by ourselves. MEA is prepared by hot pressing. The results show that as flow rate decreases, the MEA with gradient distribution will show a higher voltage at a high current density for catalyst coated membrane (CCM) method. For CCM method, gradient distribution can optimize cell performance under low cathode flow rate, but the optimization effect is weakened when flow rate is too low. Compared with CCM method, the gas diffusion electrode (GDE) method makes the difference value of Ohmic resistance between gradient and uniform distribution very larger, resulting in poor performance improvement. For GDE method, gradient distribution shows no optimization for cell performance under different Pt loadings and RH, but a smaller average Pt loading and fully-humidified reactants can reduce the performance distinction between uniform and gradient distribution. The gradient design of Pt and Nafion along the in-plane direction is a promising strategy to improve the performance of PEM fuel cell. Reasonably controlling the gradient distribution of Pt in the plane direction of cathode can reduce the amount of Pt catalysts and improve efficiency.


Author(s):  
Hsiao-Kang Ma ◽  
Jyun-Sheng Wang ◽  
Ya-Ting Chang

Previous studies of a piezoelectric proton exchange membrane fuel cell with nozzle and diffuser (PZT-PEMFC-ND) have shown that a PZT device could solve flooding problems and improve cell performance. The results also indicated that the rectification efficiency (γ) of the diffuser elements, the PZT vibrating frequency (f), and the displaced volume per stroke (ΔV) affected the flow rate of the PZT device. The rectification efficiency of the diffuser elements, which is an indicator of the preferential direction, depends on the geometrical parameters (AR and θ) and the Reynolds number. In this study, an innovative design for a PZT-PEMFC-ND bi-cell with pseudo bipolar electrodes was developed to achieve a higher power in the stack design to solve water flooding problems and improve cell performance. This new design, with a reaction area of 8 cm2, contains two cells with two outside anodes and two inside cathodes that share a common PZT vibrating device for pumping air flow. The influence of the varying aspect ratio (AR) of the diffuser elements on the unit cell flow rate were investigated using a three-dimensional transitional model. The results show that a proper AR value of 11.25 for the diffuser with a smaller θ of 5° could ensure a smoother intake of the air and thus better cell performance. A lower AR value of 5.63 resulted in smaller actuation pressure inside the chamber, and thus the produced water could not be pumped out. However, a larger AR of 16.88 induced a blocking phenomenon inside the diffuser element, and thus less air was sucked into the cathode chamber. The performance of the PZT-PEMFC-ND bi-cell could be 1.6 times greater than that of the single cell. This performance may be influenced by the phase difference of the operating modes.


2012 ◽  
Vol 66 (12) ◽  
Author(s):  
Chumphol Yunphuttha ◽  
Win Bunjongpru ◽  
Supanit Porntheeraphat ◽  
Atchana Wongchaisuwat ◽  
Charndet Hruanun ◽  
...  

AbstractA direct-methanol fuel cell containing three parts: microchannels, electrodes, and a proton exchange membrane (PEM), was investigated. Nafion resin (NR) and polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (PS) were used as PEMs. Preparation of PEMs, including compositing with other polymers and their solubility, was performed and their proton conductivity was measured by a four point probe. The results showed that the 5 % Nafion resin has lower conductivity than the 5 % PS solution. The micro-fuel cell contained two acrylic channels, PEM, and two platinum catalyst electrodes on a silicon wafer. The assembled micro-fuel cells used 2 M methanol at the flow rate of 1.5 mL min−1 in the anode channel and 5 × 10−3 M KMnO4 at the flow rate of 1.5 mL min−1 in the cathode channel. The micro-fuel cell with the electrode distance of 300 μm provided the power density of 59.16 μW cm−2 and the current density of 125.60 μA cm−2 at 0.47 V.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4458
Author(s):  
Farid Aubras ◽  
Cedric Damour ◽  
Michel Benne ◽  
Sebastien Boulevard ◽  
Miloud Bessafi ◽  
...  

This work focuses on a signal-based diagnosis approach dedicated to proton exchange membrane water electrolyzer (PEM WE) anode pump fault. The PEM WE cell measurements are performed with an experimental test bench to highlight the impact of water flow rate in the anode compartment. This approach is non-intrusive, and it can detect anode flow rate variation during the electrolysis and is designed to fulfill online diagnosis requirements. Contrary to electrochemical impedance spectroscopy-based approaches (EIS), this method stands out from existing procedures as a result of its few requirements, excluding any signal with perturbing amplitude. Therefore, the electrolyzer remains continuously available, even while the analysis is performed. The empirical mode decomposition (EMD) is used to decompose the signal variation into a sum of amplitude modulation and frequency modulation (AM-FM) components, called intrinsic mode functions (IMFs). In this work, the PEM WE current signal is decomposed into several IMFs using EMD. Then, the energetic contribution of each IMF is calculated. Experimental results exhibited that the energetic contribution of IMFs can be used as relevant criteria for fault diagnosis in PEM WE systems. This process only requires monitoring of the PEM WE current and has a low computational cost, which is a significant economic and technical advantage.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 822
Author(s):  
Yena Choi ◽  
Woojung Lee ◽  
Youngseung Na

Water electrolysis is an eco-friendly method for the utilization of renewable energy sources which provide intermittent power supply. Proton exchange membrane water electrolysis (PEMWE) has a high efficiency in this regard. However, the two-phase flow of water and oxygen at the anode side causes performance degradation, and various operating conditions affect the performance of PEMWE. In this study, the effects of four control parameters (operating temperature, flow rate, cell orientation, and pattern of the channel) on the performance of PEMWE were investigated. The effects of the operating conditions on its performance were examined using a 25 cm2 single-cell. Evaluation tests were conducted using in situ methods such as polarization curves and electrochemical impedance spectroscopy. The results demonstrated that a high operating temperature and low flow rate reduce the activation and ohmic losses, and thereby enhance the performance of PEMWE. Additionally, the cell orientation affects the performance of PEMWE owing to the variation in the two-phase flow regime. It was observed that the slope of specific sections in the polarization curve rapidly increases at a specific cell voltage.


Sign in / Sign up

Export Citation Format

Share Document