Analysis of two 3-DOF parallel mechanisms with constrained Stewart Platform structure

Author(s):  
Seok-Hee Lee ◽  
Whee-Kuk Kim ◽  
Byung-Ju Yi ◽  
Il-Hong Suh
2010 ◽  
Vol 4 (4) ◽  
pp. 355-363 ◽  
Author(s):  
Hiroshi Yachi ◽  
◽  
Hiroshi Tachiya

This paper proposes a calibration method for parallel mechanisms usingResponse Surface Methodology. This method is a statistical approach to estimating an unknown input-output relationship using a small set of efficient data collected on an intended system. Although identifying locations causing positional errors in a parallel mechanism and precisely measuring the position and posture of the output point are difficult, the proposed calibration method based onResponse Surface Methodologyaims to compensate for positional and postural errors, without indentifying the locations causing these errors, by using a small yet efficient measurement data set. This study analyzes the effectiveness of the method we propose by applying it to a Stewart platform, which is a typical spatial 6-DOF parallel mechanism.


Author(s):  
Yuhang He ◽  
Weijia Li ◽  
Yaozhong Wu ◽  
Jinbo Wu ◽  
Zhiyuan Cheng

Abstract Compared with traditional antenna platform with two axes, Stewart platform can search airspace with no tracking blind district. And the advantages of high accuracy, high stiffness and high load-weight ratio also make it be a better solution for antenna platforms. This paper designed a 6-DOF ship-borne antenna platform based on the Stewart platform to overcome the difficulties that to realize a large orientation workspace (azimuth range is from 0° to 360°, pitch range is from 0° to 100°) under the compact dimensions of parallel mechanisms. A novel joint structure has been proposed which can provide a larger rotation angle than common Hooke joints to realize the large orientation workspace without the inter-mechanism interference. In addition, this paper defined the concept of working height and working radius then proposed a trajectory based on that to obtain the complete pose (translation and orientation) of antenna platform by azimuth and pitch angles. After that, the particle swarm optimization algorithm is employed to seek the optimal geometrical design parameters. A prototype of the 6-DOF ship-borne antenna platform adopted the particle swarm optimization results has been constructed. And the results show that it not noly meets the design requirements, but also provides a good performance.


Robotica ◽  
2016 ◽  
Vol 35 (8) ◽  
pp. 1747-1760 ◽  
Author(s):  
MohammadHadi FarzanehKaloorazi ◽  
Mehdi Tale Masouleh ◽  
Stéphane Caro

SUMMARYThis paper proposes an interval-based approach in order to obtain the obstacle-free workspace of parallel mechanisms containing one prismatic actuated joint per limb, which connects the base to the end-effector. This approach is represented through two cases studies, namely a 3-RPR planar parallel mechanism and the so-called 6-DOF Gough–Stewart platform. Three main features of the obstacle-free workspace are taken into account: mechanical stroke of actuators, collision between limbs and obstacles and limb interference. In this paper, a circle(planar case)/spherical(spatial case) shaped obstacle is considered and its mechanical interference with limbs and edges of the end-effector is analyzed. It should be noted that considering a circle/spherical shape would not degrade the generality of the problem, since any kind of obstacle could be replaced by its circumscribed circle/sphere. Two illustrative examples are given to highlight the contributions of the paper.


2008 ◽  
Vol 130 (11) ◽  
Author(s):  
Qimi Jiang ◽  
Clément M. Gosselin

The maximal singularity-free workspace of parallel mechanisms is a desirable criterion in robot design. However, for a 6DOF parallel mechanism, it is very difficult to find an analytic method to determine the maximal singularity-free workspace around a prescribed point for a given orientation. Hence, a numerical algorithm is presented in this paper to compute the maximal singularity-free workspace as well as the corresponding leg length ranges of the Gough–Stewart platform. This algorithm is based on the relationship between the maximal singularity-free workspace and the singularity surface. Case studies with different orientations are performed to demonstrate the presented algorithm. The obtained results can be applied to the geometric design or parameter (leg length) setup of this type of parallel robots.


Author(s):  
Shunzhou Huang ◽  
Jue Yu ◽  
Hao Wang ◽  
Yong Zhao ◽  
Xinmin Lai

Stiffness performance is of importance for the use of parallel manipulators in the industrial applications. For this consideration, this paper proposes to realize the desired stiffness properties of parallel mechanism by adding redundantly-actuated limbs. Based on the stiffness mapping models of both the full-DOF and limited-DOF parallel mechanisms, the stiffness variation rules when redundant limbs is introduced into the mechanism are discussed. Moreover, an algorithm for designing the types and configurations of redundant limbs is studied. Two cases are investigated to validate the presented approach. One is about the stiffness decoupling of the Stewart platform, the other is focused on the enhancement of normal stiffness of a Tricept supporting mechanism used in a mirror milling machine designed by us. The result shows that the stiffness performance of Stewart platform can be decoupled when adding six redundantly-actuated limbs that are symmetric with the original active limbs. Besides, the normal stiffness of Tricept mechanism can be enhanced significantly by transforming the passive UP chain to be a redundant actuated chain.


2009 ◽  
Vol 2 (1) ◽  
Author(s):  
Qimi Jiang ◽  
Clément M. Gosselin

The singularity-free workspace of parallel mechanisms is highly desirable in a context of robot design. This work focuses on analyzing the effects of the orientation angles on the singularity-free workspace of the Gough–Stewart platform in order to determine the optimal orientation. In any orientation with ϕ=θ=0 deg and ψ≠±90 deg, the singularity surface becomes a plane coinciding with the base plane. Hence, an analytic algorithm is presented in this work to determine the singularity-free workspace. The results show that the singularity-free workspace in some orientations can be larger than that in the reference orientation with ϕ=θ=ψ=0 deg. However, the global optimal orientation is difficult to determine. Only an approximate optimal orientation is available. The results obtained can be applied to the design or parameter setup of the Gough–Stewart platform.


1993 ◽  
Vol 115 (3) ◽  
pp. 515-521 ◽  
Author(s):  
C. Innocenti ◽  
V. Parenti-Castelli

The paper presents the closed form direct displacement analysis for a class of Stewart platform-type parallel mechanisms whose general feature consists of six legs which meet five distinct points both in the base and in the movable output link. Out of the two possible arrangements, only one is here analyzed in detail. Given a set of actuator displacements the analysis provides all the possible locations of the platform relative to the base. The analysis results in a 40th degree polynomial equation in one unknown. The roots of the equation provide in the complex field forty closures of the mechanism. This new result has been numerically verified by the inverse displacement analysis.


Author(s):  
Michael Slavutin ◽  
Offer Shai ◽  
Andreas Müller

The duality (known also as symmetry) between serial chain manipulators and fully parallel mechanisms is well known in the literature. This paper takes this idea one step further, by introducing a systematic method that transforms mechanical systems into other and different mechanical systems so that the wrench screws in the original system gives rise to the relative twist screws in the second system. The mathematical foundation of this work relies on using the BB graph, a variant of graph representation widely used in mechanisms, possessing both the topology and geometry of the original system. From the dual graph of the latter it is possible to construct the dual system at a specific configuration. Relying on the equivalence between the dual systems, it is proved that if the screw system of a mechanism is at the singular position, so is that of its dual. This idea is demonstrated by showing the dual system of a Bricard mechanism, which is a 6/6 Stewart Platform in the singular position. The paper also shows that the cyclohexane molecule is dual to the 6/3 Stewart platform at the singular position, providing another perspective of the known mobility of this molecule.


2010 ◽  
Vol 130 (4) ◽  
pp. 660-667 ◽  
Author(s):  
Akihiro Torii ◽  
Masaaki Banno ◽  
Akiteru Ueda ◽  
Kae Doki
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document