Closed-Form Direct Position Analysis of a 5–5 Parallel Mechanism

1993 ◽  
Vol 115 (3) ◽  
pp. 515-521 ◽  
Author(s):  
C. Innocenti ◽  
V. Parenti-Castelli

The paper presents the closed form direct displacement analysis for a class of Stewart platform-type parallel mechanisms whose general feature consists of six legs which meet five distinct points both in the base and in the movable output link. Out of the two possible arrangements, only one is here analyzed in detail. Given a set of actuator displacements the analysis provides all the possible locations of the platform relative to the base. The analysis results in a 40th degree polynomial equation in one unknown. The roots of the equation provide in the complex field forty closures of the mechanism. This new result has been numerically verified by the inverse displacement analysis.

1971 ◽  
Vol 93 (1) ◽  
pp. 221-226 ◽  
Author(s):  
A. H. Soni ◽  
P. R. Pamidi

Using (3 × 3) matrices with dual-number elements, closed form displacement relationships are derived for a spatial five-link R-R-C-C-R mechanism. The input-output closed form displacement relationship is an eighth degree polynomial equation. A numerical example is presented.


2010 ◽  
Vol 4 (4) ◽  
pp. 355-363 ◽  
Author(s):  
Hiroshi Yachi ◽  
◽  
Hiroshi Tachiya

This paper proposes a calibration method for parallel mechanisms usingResponse Surface Methodology. This method is a statistical approach to estimating an unknown input-output relationship using a small set of efficient data collected on an intended system. Although identifying locations causing positional errors in a parallel mechanism and precisely measuring the position and posture of the output point are difficult, the proposed calibration method based onResponse Surface Methodologyaims to compensate for positional and postural errors, without indentifying the locations causing these errors, by using a small yet efficient measurement data set. This study analyzes the effectiveness of the method we propose by applying it to a Stewart platform, which is a typical spatial 6-DOF parallel mechanism.


Robotica ◽  
2002 ◽  
Vol 20 (3) ◽  
pp. 323-328 ◽  
Author(s):  
Raffaele Di Gregorio

In parallel mechanisms, singular configurations (singularities) have to be avoided during motion. All the singularities should be located in order to avoid them. Hence, relationships involving all the singular platform poses (singularity locus) and the mechanism geometric parameters are useful in the design of parallel mechanisms. This paper presents a new expression of the singularity condition of the most general mechanism (6-6 FPM) of a class of parallel mechanisms usually named fully-parallel mechanisms (FPM). The presented expression uses the mixed products of vectors that are easy to be identified on the mechanism. This approach will permit some singularities to be geometrically found. A procedure, based on this new expression, is provided to transform the singularity condition into a ninth-degree polynomial equation whose unknowns are the platform pose parameters. This singularity polynomial equation is cubic in the platform position parameters and a sixth-degree one in the platform orientation parameters. Finally, how to derive the expression of the singularity condition of a specific FPM from the presented 6-6 FPM singularity condition will be shown along with an example.


Author(s):  
Ting-Li Yang ◽  
An-Xin Liu ◽  
Qiong Jin ◽  
Yu-Feng Luo ◽  
Hui-Ping Shen ◽  
...  

This paper presents the explicit mapping relations between topological structure of parallel mechanism and position and orientation characteristic (in short, POC) of its motion output link. It deals with: (1) The symbolic representation and the invariant of topological structure of mechanism; (2) The matrix representation of POC of motion output link; (3) The POC equations of parallel mechanism and its symbolic operation rules. The symbolic operation involves simple mathematic tools and fewer operation rules, and has clear geometrical meaning. So, it is easy to use. The forward operation of the POC equations can be used for structural analysis; its inverse operation can be used for structural synthesis. The method proposed in this paper is totally different from the methods based on screw theory and based on displacement subgroup.


Author(s):  
Daxing Zeng ◽  
Zhen Huang ◽  
Linlin Zhang

This paper presents the mobility analysis, the inverse and forward displacement analysis, and workspace of a novel 3-DOF 3-RPUR parallel manipulator. Closed-form inverse displacement solutions are obtained by the Denavit-Hartenberg method. The forward displacement problem is analyzed by using the continuation method and proved applying the result of the inverse displacement analysis. The workspace of the mechanism is also obtained. A numerical example is given in the paper.


Robotica ◽  
2016 ◽  
Vol 35 (8) ◽  
pp. 1747-1760 ◽  
Author(s):  
MohammadHadi FarzanehKaloorazi ◽  
Mehdi Tale Masouleh ◽  
Stéphane Caro

SUMMARYThis paper proposes an interval-based approach in order to obtain the obstacle-free workspace of parallel mechanisms containing one prismatic actuated joint per limb, which connects the base to the end-effector. This approach is represented through two cases studies, namely a 3-RPR planar parallel mechanism and the so-called 6-DOF Gough–Stewart platform. Three main features of the obstacle-free workspace are taken into account: mechanical stroke of actuators, collision between limbs and obstacles and limb interference. In this paper, a circle(planar case)/spherical(spatial case) shaped obstacle is considered and its mechanical interference with limbs and edges of the end-effector is analyzed. It should be noted that considering a circle/spherical shape would not degrade the generality of the problem, since any kind of obstacle could be replaced by its circumscribed circle/sphere. Two illustrative examples are given to highlight the contributions of the paper.


Author(s):  
D Gan ◽  
Q Liao ◽  
J S Dai ◽  
S Wei ◽  
L D Seneviratne

A new parallel mechanism 1CCC–5SPS which has distance and angle constraints is introduced in this article. Degree of freedom and forward kinematic analysis of this new parallel mechanism are presented, in which four equivalent polynomial equations are obtained from the original six geometrical constraint equations. The Gröbner basis theory is used with the four equations and the problem of forward displacement is reduced to a 40th degree polynomial equation in a single unknown from a constructed 10 × 10 Sylvester's matrix which is small in size, from which 40 different locations of the moving platform can be derived. A numerical example confirms the efficiency of the procedure.


2008 ◽  
Vol 130 (11) ◽  
Author(s):  
Qimi Jiang ◽  
Clément M. Gosselin

The maximal singularity-free workspace of parallel mechanisms is a desirable criterion in robot design. However, for a 6DOF parallel mechanism, it is very difficult to find an analytic method to determine the maximal singularity-free workspace around a prescribed point for a given orientation. Hence, a numerical algorithm is presented in this paper to compute the maximal singularity-free workspace as well as the corresponding leg length ranges of the Gough–Stewart platform. This algorithm is based on the relationship between the maximal singularity-free workspace and the singularity surface. Case studies with different orientations are performed to demonstrate the presented algorithm. The obtained results can be applied to the geometric design or parameter (leg length) setup of this type of parallel robots.


Author(s):  
Shunzhou Huang ◽  
Jue Yu ◽  
Hao Wang ◽  
Yong Zhao ◽  
Xinmin Lai

Stiffness performance is of importance for the use of parallel manipulators in the industrial applications. For this consideration, this paper proposes to realize the desired stiffness properties of parallel mechanism by adding redundantly-actuated limbs. Based on the stiffness mapping models of both the full-DOF and limited-DOF parallel mechanisms, the stiffness variation rules when redundant limbs is introduced into the mechanism are discussed. Moreover, an algorithm for designing the types and configurations of redundant limbs is studied. Two cases are investigated to validate the presented approach. One is about the stiffness decoupling of the Stewart platform, the other is focused on the enhancement of normal stiffness of a Tricept supporting mechanism used in a mirror milling machine designed by us. The result shows that the stiffness performance of Stewart platform can be decoupled when adding six redundantly-actuated limbs that are symmetric with the original active limbs. Besides, the normal stiffness of Tricept mechanism can be enhanced significantly by transforming the passive UP chain to be a redundant actuated chain.


Sign in / Sign up

Export Citation Format

Share Document