An Audio and Haptic Feedback-Based Virtual Environment Spatial Navigation Learning Tool

Author(s):  
Carmen Chai Wang Er ◽  
Bee Theng Lau ◽  
Pan Zheng
2005 ◽  
Author(s):  
Richard Mraz ◽  
Nancy J. Lobaugh ◽  
Genevieve Quintin ◽  
Konstantine K. Kakzanis ◽  
Simon J. Graham

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Faraz Shah ◽  
Ilia G. Polushin

The paper deals with the design of control algorithms for virtual reality based telerobotic system with haptic feedback that allows for the remote control of the vertical drilling operation. The human operator controls the vertical penetration velocity using a haptic device while simultaneously receiving the haptic feedback from the locally implemented virtual environment. The virtual environment is rendered as a virtual spring with stiffness updated based on the estimate of the stiffness of the rock currently being cut. Based on the existing mathematical models of drill string/drive systems and rock cutting/penetration process, a robust servo controller is designed which guarantees the tracking of the reference vertical penetration velocity of the drill bit. A scheme for on-line estimation of the rock intrinsic specific energy is implemented. Simulations of the proposed control and parameter estimation algorithms have been conducted; consequently, the overall telerobotic drilling system with a human operator controlling the process using PHANTOM Omni haptic device is tested experimentally, where the drilling process is simulated in real time in virtual environment.


Author(s):  
Adam J. Faeth ◽  
Chris Harding

This research describes a theoretical framework for designing multimodal feedback for 3D buttons in a virtual environment. Virtual button implementations often suffer from inadequate feedback compared to their mechanical, real-world, counterparts. This lack of feedback can lead to accidental button actuations and reduce the user’s ability to discover how to interact with the virtual button. We propose a framework for more expressive virtual button feedback that communicates visual, audio, and haptic feedback to the user. We apply the theoretical framework by implementing a software library prototype to support multimodal feedback from virtual buttons in a 3D virtual reality workspace.


2000 ◽  
Vol 12 (3) ◽  
pp. 292-303 ◽  
Author(s):  
Atsuko Tanaka ◽  
◽  
Koichi Hirota ◽  
Toyohisa Kaneko ◽  
◽  
...  

In this paper, we discuss an approach to applying a virtual environment to shape forming tasks. In the study, we implemented a vertual work space that support deforming and cutting operations with visual and haptic feedback. In the implementation of the deforming operation, the surface shape is represented by a geometric model while the physical reaction is simulated using a spring model. The deformation of the spring model is considered on the geometric model by using interpolation technique. In the implementation of the cutting operation, we realized visual and haptic feedback of the cutting operation remarking on the geometric and physical aspects, respectively. Combining the deforming and the cutting environment, we successfully implemented a work space in which we can form and design shapes through operations similar to clay modeling.


Robotica ◽  
2009 ◽  
Vol 28 (1) ◽  
pp. 47-56 ◽  
Author(s):  
M. Karkoub ◽  
M.-G. Her ◽  
J.-M. Chen

SUMMARYIn this paper, an interactive virtual reality motion simulator is designed and analyzed. The main components of the system include a bilateral control interface, networking, a virtual environment, and a motion simulator. The virtual reality entertainment system uses a virtual environment that enables the operator to feel the actual feedback through a haptic interface as well as the distorted motion from the virtual environment just as s/he would in the real environment. The control scheme for the simulator uses the change in velocity and acceleration that the operator imposes on the joystick, the environmental changes imposed on the motion simulator, and the haptic feedback to the operator to maneuver the simulator in the real environment. The stability of the closed-loop system is analyzed based on the Nyquist stability criteria. It is shown that the proposed design for the simulator system works well and the theoretical findings are validated experimentally.


Author(s):  
Ulises Zaldivar-Colado ◽  
Samir Garbaya

In this paper, we present the virtual environment of assembly sequence generation of a product at the design stage. The interaction technique developed for the manipulation of virtual parts includes visual and haptic feedback limited to force sensation in the fingertips and weight and inertia parts sensation. At this stage of development, the parts and subassemblies have kinematics behaviour in the virtual scene. We present some guidelines for modeling a generic virtual environment for performing assembly tasks. Virtual parts modeling and connections modeling is based on characteristics of real parts and connections. The mating phase of assembly is based on the Snap-Fitting technique, which is improved by the addition of vectors in the symmetry axis of virtual parts. An XML modeling allows the environment to be generic and supporting different products.


Sign in / Sign up

Export Citation Format

Share Document