Analysis of Influencing Factors of Equipment Cost Based on Entropy Weight Method and Improved Grey Relational Model

Author(s):  
Changcong Zhang ◽  
Qinghua Liu ◽  
Qiqing Fang ◽  
Yang Jiang ◽  
Liang Xia ◽  
...  
Author(s):  
Guo-Niu Zhu ◽  
Jie Hu ◽  
Jin Qi ◽  
Tao He ◽  
Ying-Hong Peng

AbstractChange mode and effects analysis (CMEA) is a powerful technique for measuring product flexibility toward future changes and diminishing the cost of redesign as well as shortening time to market. As a systematic methodology, it provides an in-depth view for the investigation of potential changes, causes, and effects in designs, products, and processes. Traditional CMEA determines the risk priorities of change modes by using change potential number, which requires the risk factors of design flexibility, occurrence, and readiness to be precisely evaluated. However, this is not always possible in real applications due to the uncertainty and subjectivity involved in the early design stages. It has been criticized much for its deficiencies in criteria weighting of the risk factors, change potential number calculation, and risk priorities determination of the change modes. This paper presents a systematic evaluation approach for determining a more rational rank of change modes by combining with the entropy weight method, rough number, and grey relational analysis. In this study, the entropy weight method is adopted to calculate the relative importance of risk factors. Rough number is presented to aggregate individual weights and preferences, and to manipulate the vagueness in the evaluation process. Then a rough number enhanced grey relational analysis is proposed to evaluate the risk ranking of change modes. Finally, a practical example is put forward to validate the performance of the proposed method. The result shows that the proposed change mode evaluation method can effectively overcome the shortcomings of traditional CMEA and strengthen the objectivity of product flexibility measurement.


2021 ◽  
Vol 11 (5) ◽  
pp. 2213
Author(s):  
Da Huang ◽  
Mei Han

In order to select the optimal transportation route among alternative transportation routes more accurately and objectively, the choice of urban oversize cargo transportation routes was studied by taking the optimization weight–TOPSIS combination method for specific calculations. This model, based on an entropy weight method, cloud model, and TOPSIS method, combines the superiority of the cloud model for reflecting the randomness and discreteness of subjective evaluation with the advantages of the TOPSIS method in dealing with the problem of multi-objective programming. Through selecting and classifying several the main road influencing factors of urban oversize cargo transportation, based on the data of four urban roads, the entropy weight method is used to initially determine the weights of each influencing factor, the cloud model is used to optimize weights, the TOPSIS method is used to compare and evaluate the paths, and the optimal transportation route is selected on this basis. The results showed that the optimization weight–TOPSIS method is scientific and accurate for the multi-objective planning of oversize cargo transportation route selection, and solves the problem of the impact of subjective factors in existing methods and the difficulty of processing multiple influencing factors. The Pearson consistency test results show that the Pearson correlation coefficient between the proposed method and the actual oversize cargo transportation route selection is 0.995, which is higher than the calculation results without using the combination weight.


Author(s):  
Quanle Zou ◽  
Tiancheng Zhang ◽  
Wei Liu

In recent years, various large- and medium-sized shopping malls have been essential components of each city with the speed-up of China’s urbanization process and the improvement of residents’ living standard. A method for evaluating fire risk in shopping malls based on quantified safety checklist and structure entropy weight method was proposed according to related literatures as well as laws and regulations by analyzing the characteristics of fires occurring in shopping malls in recent years. At first, the factors influencing the fire risk in shopping malls were determined by carrying out on-site survey and visiting related organizations to construct an evaluation index system for fires occurring in shopping malls; afterwards, a quantified safety checklist composed of four parts (i.e. safety grade, grade description, scoring criterion and index quantification) was established based on related laws and regulations; subsequently, index weights were determined by utilizing structure entropy weight method, thus putting forward a method for assessing fire risk in shopping malls based on quantified safety checklist and structure entropy weight method. Eventually, the applicability of the evaluation method was validated exampled by Wal-Mart. The research result provides a theoretical basis for further improvement of the theoretical system for fire risk evaluation in shopping malls, and also exerts practical and guidance significance on timeous and effective early warning as well as prevention and control of building fires.


2011 ◽  
Vol 347-353 ◽  
pp. 1735-1739
Author(s):  
Jie Shang ◽  
Yuan Yao

This paper has analyzed the degree of agricultural waste recycling utilization, and problems existing in current rural calculated degree of waste recycling in Heilongjiang province, using AHP and entropy weight method integrated and construct the rural waste recycling system, and points out that the evaluation index system of agricultural waste recycling after the development direction.,This paper has analyzed the degree of agricultural waste recycling utilization, and problems existing in current rural calculated degree of waste recycling in Heilongjiang province, using AHP and entropy weight method integrated and construct the rural waste recycling system, and points out that the evaluation index system of agricultural waste recycling after the development direction.


Sign in / Sign up

Export Citation Format

Share Document