scholarly journals Improving Low Power Listening (LPL) Mechanism to Save Energy Consumption in WSN

Author(s):  
Jessye Dos Santos ◽  
Guillaume Terrasson ◽  
Alvaro Llaria
2014 ◽  
Vol 700 ◽  
pp. 181-184
Author(s):  
Xu Zhang ◽  
Peng Chao Han ◽  
Yin Peng Yu ◽  
Yu Fang Zhou ◽  
Ya Min Xie

As one of promising "last mile" scheme for broadband access network, Fiber-Wireless (FiWi) access network has the advantages of high capacity, long distance, low cost etc because it is the integration of optical back-end and wireless front-end. At the same time, energy consumption of FiWi access network is an important factor that limits the development of networks. A number of ONU sleep states such as ONU power shedding state, ONU doze state, ONU deep sleep state and ONU fast sleep state have been proposed to obtain low-power ONU state, which indirectly reduce energy consumption of networks. However, these low-power states of ONU are born to coordinate to green Passive Optical Network (PON), of which the function of ONU is different from FiWi. In this paper, two low power ONU sleep mechanisms called Static ONU Sleep (SOS) mechanism and Dynamic ONU Sleep (DOS) mechanism, respectively, are proposed and embedded into FiWi access network. By simulation and analysis based on OPNET 14.5, this paper shows that the DOS mechanism has a better performance than SOS, and both of them can save energy of FiWi access network.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1800
Author(s):  
Linfei Hou ◽  
Fengyu Zhou ◽  
Kiwan Kim ◽  
Liang Zhang

The four-wheeled Mecanum robot is widely used in various industries due to its maneuverability and strong load capacity, which is suitable for performing precise transportation tasks in a narrow environment. While the Mecanum wheel robot has mobility, it also consumes more energy than ordinary robots. The power consumed by the Mecanum wheel mobile robot varies enormously depending on their operating regimes and environments. Therefore, only knowing the working environment of the robot and the accurate power consumption model can we accurately predict the power consumption of the robot. In order to increase the applicable scenarios of energy consumption modeling for Mecanum wheel robots and improve the accuracy of energy consumption modeling, this paper focuses on various factors that affect the energy consumption of the Mecanum wheel robot, such as motor temperature, terrain, the center of gravity position, etc. The model is derived from the kinematic and kinetic model combined with electrical engineering and energy flow principles. The model has been simulated in MATLAB and experimentally validated with the four-wheeled Mecanum robot platform in our lab. Experimental results show that the accuracy of the model reached 95%. The results of energy consumption modeling can help robots save energy by helping them to perform rational path planning and task planning.


2013 ◽  
Vol 316-317 ◽  
pp. 176-180 ◽  
Author(s):  
Xue Jing Zheng ◽  
Meng Jun Yang ◽  
Wan Dong Zheng ◽  
Yun Kun Bu

Sino-Singapore Tianjin Eco-city is a strategic cooperation project between China and Singapore to improve the living environment and build an eco-culture. Animation-park covers an area of 1 km2, with a total construction area of 7.7x105m2. Wide sources of the renewable energy, such as solar hot water system, ground source heat pump system, solar PV power generation system, and deep geothermal energy system, is strongly recommended to use in eco-city in order to save energy and protect the environment. The usage of renewable energy is seen as a complement to the conventional energy. The energy consumption of the animation park is 42926tce of coal per year, and the renewable energy that used is 4573.6tce of coal per year. The usage of renewable energy leads to the reduction in the emission of CO2 of 18895.9t per year.


2009 ◽  
Vol 18 (01) ◽  
pp. 181-198 ◽  
Author(s):  
XIAO XIN XIA ◽  
TENG TIOW TAY

Energy consumption is one of the most important design constraints for modern microprocessors, and designers have proposed many energy-saving techniques. Looking beyond the traditional hardware low-power designs, software optimization is becoming a significant strategy for the microprocessor to lower its energy consumption. This paper describes an intra-application identification and reconfiguration mechanism for microprocessor energy reduction. Our mechanism employs a statistical sampling method during training runs to identify code sections among application that have appropriate IPC (Instructions per Cycle) values and could make contributions to program runtime energy reduction, and then profiles them to dynamically scale the voltage and frequency of the microprocessor at appropriate points during execution. In our simulation, our approach achieves energy savings by an average of 39% with minor performance degradation, compared to a processor running at a fixed voltage and speed.


2012 ◽  
Vol 20 (1) ◽  
pp. 35-40
Author(s):  
S. Štefunková

Characteristics of asphalt mixes with FT additiveThis article is focused on low-temperature asphalt mixture technologies using FT additive and RAP. The modern production and use of asphalt mixture technologies with reduced temperatures has many advantages. These advantages mainly help to save energy and the environment. Lower temperatures enable a reduction in energy consumption, a more acceptable working environment for workers, a reduction in negative environmental effects, such as greenhouse gas emissions, and an improvement in the workability of mixtures and a prolongation of their duration. This technology is currently becoming popular in many countries.


2021 ◽  
Author(s):  
Archana Bhat ◽  
Geetha V

Abstract IPv6 Routing Protocol for low power and lossy networks (RPL) is a standardized and default routing protocol for low power lossy networks. However, this is basically designed for sensor networks with scalar data and not optimised for the networks with multi-modal sensors. The data rate of each multi-modal sensor varies based on various applications. RPL suffers from packet drops and re-transmissions which results in packet loss and energy consumption in case of multi-modal data transmission. Hence, the routing strategy implemented in RPL needs better scheduling strategy at parent node for forwarding packets based on various parameters. In this paper, relevant Objective Functions for multi-modal sensor data communication is proposed based on various parameters identified and a weighted ranking based scheduling strategy is proposed for multi-modal data communication called R-RPL. The goal of proposed ranking based RPL (R-RPL) is to increase the throughput and reduce the loss in terms of energy and delay based on proposed scheduling strategy for parent selection. The performance of the proposed R-RPL is evaluated in the contiki based Cooja simulator and compared with RPL protocol. The analysis shows that the R-RPL performs better compared to RPL with respect to packet delivery ratio and energy consumption.


2021 ◽  
Vol 263 ◽  
pp. 04025
Author(s):  
Dmitrii Khlopitsyn ◽  
Andrey Rymarov

Energy consumption all over the world is constantly growing. To save energy, new technologies are being developed for the efficient use of energy resources. The goal of all new developments is to use less energy to provide the same level of energy supply for technological processes or buildings. The problem of energy saving is relevant for the ventilation system. Together with the removed air, a large amount of heat is lost, which is not advisable. In order to avoid these losses, heat recuperators began to be used, heating the cold supply air due to the warm air removed from the room. This development belongs to the field of energy saving. The goal is to increase efficiency by reheating the air after the heater with the help of a recuperator for a given temperature difference in the supply air before and after the recuperative heat exchanger. The development is a design of a ventilation unit with air removal and supply air ducts, combined into one housing with a separate, according to the “screw” principle, heat transfer wall, for use in the ventilation system in order to ensure an optimal microclimate in the room. Thus, as a result of using the presented device, the efficiency of the room ventilation unit is increased by reducing the energy consumption for heating the supply air with a heater.


2020 ◽  
Vol 328 ◽  
pp. 01014
Author(s):  
Kamil Križo ◽  
Andrej Kapjor ◽  
Martin Vantúch

Fresh air has to be constantly supplied to the building by air handling unit, where supplied air is mixed with inside air and optimal temperature, oxygen level is adjusted and level of dust and smoke is reduced. Supply air demand of the building is determined according to number of persons in the room, room area and regulations. Necessity of ventilation rely in supplying room with oxygen, cleaning the air, adjusting temperature and moisture and reduction of odours, gases, dust, bacteria and viruses. Achieving optimal properties of supply air creates huge portion of building energy consumption. To save energy during ventilation, standard air to air sensible heat exchangers are used. They purpose is to recover sensible heat from exhaust air and at the same time avoid contamination of supply air. Drawback of these types of exchangers is limit of recovering moisture, therefore huge portion of energy in form of latent heat is lost. On top of classical plate air to air heat exchanger, enthalpy heat exchanger allows to exchange latent as well as sensible heat [1].


Sign in / Sign up

Export Citation Format

Share Document