Optimal Sizing and Siting of EV Charging Stations in a Real Distribution System Environment

Author(s):  
Ibrahim Sengor ◽  
Ayse Kubra Erenoglu ◽  
Ozan Erdinc ◽  
Akin Tascikaraoglu ◽  
Ibrahim Can Tastan ◽  
...  
2021 ◽  
Vol 12 (4) ◽  
pp. 218
Author(s):  
Mohammad A. Obeidat ◽  
Abdulaziz Almutairi ◽  
Saeed Alyami ◽  
Ruia Dahoud ◽  
Ayman M. Mansour ◽  
...  

In recent years, air pollution and climate change issues have pushed people worldwide to switch to using electric vehicles (EVs) instead of gas-driven vehicles. Unfortunately, most distribution system facilities are neither designed nor well prepared to accommodate these new types of loads, which are characterized by random and uncertain behavior. Therefore, this paper provides a comprehensive investigation of EVs’ effect on a realistic distribution system. It provides a technical evaluation and analysis of a real distribution system’s load and voltage drop in the presence of EVs under different charging strategies. In addition, this investigation presents a new methodology for managing EV loads under a dynamic response strategy in response to the distribution system’s critical hours. The proposed methodology is applied to a real distribution network, using the Monte Carlo method and the CYME program. Random driver behavior is taken into account in addition to various factors that affect EV load parameters. Overall, the results show that the distribution system is significantly affected by the addition of EV charging loads, which create a severe risk to feeder limits and voltage drop. However, a significant reduction in the impact of EVs can be achieved if a proper dynamic demand response programme is implemented. We hope that the outcomes of this investigation will provide decision-makers and planners with prior knowledge about the expected impact of using EVs and, consequently, enable them to take the proper actions needed to manage such load.


Author(s):  
Jayababu Badugu ◽  
Y.P. Obulesu ◽  
Ch. Sai Babu

Electric Vehicles (EVs) are becoming a viable transportation option because they are environmentally friendly and provide solutions to high oil prices. This paper investigates the impacts of electric vehicles on harmonic distortions in urban radial residential distribution systems. The accomplishment of EV innovation relies on the accessibility of EV charging stations. To meet the power demand of growing EVs, utilities are introducing EV charging stations in private and public areas; this led to a change in the residential distribution system infrastructure. In this paper, an urban radial residential distribution system with the integration of an electric vehicle charging facility is considered for investigation. An impact of different EV penetration levels on voltage distortion is analysed. Different penetration levels of EVs into the residential distribution system are considered. Simulation results are presented to validate the work carried out in this paper. An attempt has been made to establish the relationship between the level of penetration of the EVs and voltage distortion in terms of THD (Total Harmonic Distortion)


2022 ◽  
pp. 25-37
Author(s):  
Sanchari Deb ◽  
Sulabh Sachan

The growing concern about fossil energy exhaustion, air pollution, and ecological deprivation has made electric vehicles (EVs) a practical option in contrast to combustion engine-driven vehicles. In any case, driving extent uneasiness is one of the innate inadequacies related with EVs. Massive integration of EV charging load into the power system may be a threat to the distribution network. Spontaneous situation of charging stations in the distribution system and uncoordinated charging will augment the load demand thereby resulting in voltage instability, deterioration of reliability indices, harmonic distortions, and escalated power losses. This chapter will concentrate on breaking down the effect of EV chargers on the working parameters, for example, voltage dependability, unwavering quality, and force misfortune. The examination will be completed on standard test systems. The discoveries of the proposed part will evaluate the effect of EV charging load on the working parameters of the distribution system and help in proposing a framework for charging station planning.


Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 325
Author(s):  
Manan’Iarivo Louis Rasolonjanahary ◽  
Chris Bingham ◽  
Nigel Schofield ◽  
Masoud Bazargan

In the case of the widespread adoption of electric vehicles (EV), it is well known that their use and charging could affect the network distribution system, with possible repercussions including line overload and transformer saturation. In consequence, during periods of peak energy demand, the number of EVs that can be simultaneously charged, or their individual power consumption, should be controlled, particularly if the production of energy relies solely on renewable sources. This requires the adoption of adaptive and/or intelligent charging strategies. This paper focuses on public charging stations and proposes methods of attribution of charging priority based on the level of charge required and premiums. The proposed solution is based on model predictive control (MPC), which maintains total current/power within limits (which can change with time) and imparts real-time priority charge scheduling of multiple charging bays. The priority is defined in the diagonal entry of the quadratic form matrix of the cost function. In all simulations, the order of EV charging operation matched the attributed priorities for the cases of ten cars within the available power. If two or more EVs possess similar or equal diagonal entry values, then the car with the smallest battery capacitance starts to charge its battery first. The method is also shown to readily allow participation in Demand Side Response (DSR) schemes by reducing the current temporarily during the charging operation.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4079 ◽  
Author(s):  
Grzanic ◽  
Flammini ◽  
Prettico

Decarbonisation policies have recently seen an uncontrolled increase in local electricity production from renewable energy sources (RES) at distribution level. As a consequence, bidirectional power flows might cause high voltage/ medium voltage (HV/MV) transformers to overload. Additionally, not-well-planned installation of electric vehicle (EV) charging stations could provoke voltage deviations and cables overloading during peak times. To ensure secure and reliable distribution network operations, technology integration requires careful analysis which is based on realistic distribution grid models (DGM). Currently, however, only not geo-referenced synthetic grids are available inliterature. This fact unfortunately represents a big limitation. In order to overcome this knowledge gap, we developed a distribution network model (DiNeMo) web-platform aiming at reproducing the DGM of a given area of interest. DiNeMo is based on metrics and indicators collected from 99 unbundled distribution system operators (DSOs) in Europe. In this work we firstly perform a validation exercise on two DGMs of the city of Varaždin in Croatia. To this aim, a set of indicators from the DGMs and from the real networks are compared. The DGMs are later used for a power flow analysis which focuses on voltage fluctuations, line losses, and lines loading considering different levels of EV charging stations penetration.


Author(s):  
Hossein Parastvand ◽  
Octavian Bass ◽  
Mohammad A. S. Masoum ◽  
Zeinab Moghaddam ◽  
Stefan Lachowicz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document