Investigation of the solid-phase epitaxial growth of amorphized GaAs with in-situ and ex-situ electron microscopy

Author(s):  
K.B. Belay ◽  
M.C. Ridgway ◽  
D.J. Llewellyn
1997 ◽  
Vol 480 ◽  
Author(s):  
K. B. Belay ◽  
M. C. Ridgway ◽  
D. J. Llewellyn

AbstractIn-situ transmission electron microscopy (TEM) has been used to characterize the solidphase epitaxial growth of amorphized GaAs at a temperature of 260°C. To maximize heat transfer from the heated holder to the sample and minimize electron-irradiation induced artifacts, non-conventional methodologies were utilized for the preparation of cross-sectional samples. GaAs (3xI) mm rectangular slabs were cut then glued face-to-face to a size of (6x3) mm stack by maintaining the TEM region at the center. This stack was subsequently polished to a thickness of ~ 200 ýtm. A 3 mm disc was then cut from it using a Gatan ultrasonic cutter. The disc was polished and dimpled on both sides to a thickness of ~15 mimT.h is was ion-beam milled at liquid nitrogen temperature to an electron-transparent layer. From a comparison of in-situ and ex-situ measurements of the recrystallization rate, the actual sample temperature during in-situ characterization was estimated to deviate by ≤ 20°C from that of the heated holder. The influence of electron-irradiated was found to be negligible by comparing the recrystallization rate and microstructure of irradiated and unirradiated regions of comparable thickness. Similarly, the influence of “thin-foil effect” was found to be negligible by comparing the recrystallization rate and microstructure of thick and thin regions, the former determined after the removal of the sample from the microscope and further ion-beam milling of tens of microns of material. In conclusion, the potential influence of artifacts during in-situ TEM can be eliminated by the appropriate choice of sample preparation procedures.


1996 ◽  
Vol 421 ◽  
Author(s):  
K. B. Belay ◽  
M. C. Ridgway ◽  
D. J. Llewellyn

AbstractThe influence of non-stoichiometry on the solid-phase epitaxial growth of amorphized GaAs has been studied with in-situ Transmission Electron Microscopy (TEM). Ion-implantation has been used to produce microscopic non-stoichiometry via Ga and As implants and macroscopic non-stoichiometry via Ga or As implants. It has been demonstrated that amorphous GaAs recrystallizes into a thin single-crystal layer and a thick heavily twinned layer. Video images of the recrystallization process have been quantified for the first time to study the velocity of the crystalline/amorphous (c/a)-interface as a function of depth and ion species. Regrowth rates of the single crystal and twinned layers as functions of non-stoichiometry have been calculated. The phase transformation is rapid in Ga-rich material. In-situ TEM results are consistent with conventional in-situ Time Resolved Reflectivity, ex-situ Rutherford Backscattering Spectroscopy and Channelling measurements and ex-situ TEM.


1991 ◽  
Vol 235 ◽  
Author(s):  
Yung-Jen Lin ◽  
Ming-Deng Shieh ◽  
Chiapying Lee ◽  
Tri-Rung Yew

ABSTRACTSilicon epitaxial growth on silicon wafers were investigated by using plasma enhanced chemical vapor deposition from SiH4/He/H2. The epitaxial layers were growm at temperatures of 350°C or lower. The base pressure of the chamber was greater than 2 × 10−5 Torr. Prior to epitaxial growth, the wafer was in-situ cleaned by H2 baking for 30 min. The epi/substrate interface and epitaxial layers were observed by cross-sectional transmission electron microscopy (XTEM). Finally, the influence of the ex-situ and in-situ cleaning processes on the qualities of the interface and epitaxial layers was discussed in detail.


1991 ◽  
Vol 236 ◽  
Author(s):  
Yung-Jen Lin ◽  
Ming-Deng Shieh ◽  
Chiapying Lee ◽  
Tri-Rung Yew

AbstractSilicon epitaxial growth on silicon wafers were investigated by using plasma enhanced chemical vapor deposition from SiH4/He/H2. The epitaxial layers were growm at temperatures of 350°C or lower. The base pressure of the chamber was greater than 2 × 10−5 Torr. Prior to epitaxial growth, the wafer was in-situ cleaned by H2 baking for 30 min. The epi/substrate interface and epitaxial layers were observed by cross-sectional transmission electron microscopy (XTEM). Finally, the influence of the ex-situ and in-situ cleaning processes on the qualities of the interface and epitaxial layers was discussed in detail.


1998 ◽  
Vol 523 ◽  
Author(s):  
K. B. Belay ◽  
D. J. Llewellyn ◽  
M. C. Ridgway

AbstractIn-situ transmission electron microscopy (TEM) has been utilized in conjunction with conventional ex-situ Rutherford backscattering spectrometry and channeling (RBS/C), in-situ time resolved reflectivity (TRR) and ex-situ TEM to study the influence of substrate orientation on the solid-phase epitaxial growth (SPEG) of amorphised GaAs. A thin amorphous layer was produced on semi-insulating (100), (110) and (111) GaAs substrates by ion implantation of 190 and 200 keV Ga and As ions, respectively, to a total dose of 1e14/cm2. During implantation, substrates were maintained at liquid nitrogen temperature. In-situ annealing at ∼260°C was performed in the electron microscope and the data obtained was quantitatively analysed. It has been demonstrated that the non-planarity of the crystalline-amorphous (c/a)-interface was greatest for the (111) substrate orientation and least for the (110) substrate orientation. The roughness was measured in terms of the length of the a/c-interface in given window as a function of depth on a frame captured from the recorded video of the in-situ TEM experiments. The roughness of the c/a-interface was determined by the size of the angle subtended by the microtwins with respect to the interface on ex-situ TEM cross-sectional micrographs. The angle was both calculated and measured and was the largest in the case of (111) plane. The twinned fraction as a function of orientation, was calculated in terms of the disorder measured from the RBS/C and it was greatest for the (111) orientation.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


1998 ◽  
Vol 4 (3) ◽  
pp. 269-277 ◽  
Author(s):  
A. Agrawal ◽  
J. Cizeron ◽  
V.L. Colvin

In this work, the high-temperature behavior of nanocrystalline TiO2 is studied using in situ transmission electron microscopy (TEM). These nanoparticles are made using wet chemical techniques that generate the anatase phase of TiO2 with average grain sizes of 6 nm. X-ray diffraction studies of nanophase TiO2 indicate the material undergoes a solid-solid phase transformation to the stable rutile phase between 600° and 900°C. This phase transition is not observed in the TEM samples, which remain anatase up to temperatures as high as 1000°C. Above 1000°C, nanoparticles become mobile on the amorphous carbon grid and by 1300°C, all anatase diffraction is lost and larger (50 nm) single crystals of a new phase are present. This new phase is identified as TiC both from high-resolution electron microscopy after heat treatment and electron diffraction collected during in situ heating experiments. Video images of the particle motion in situ show the nanoparticles diffusing and interacting with the underlying grid material as the reaction from TiO2 to TiC proceeds.


2017 ◽  
Vol 19 (31) ◽  
pp. 20867-20880 ◽  
Author(s):  
David C. Bock ◽  
Christopher J. Pelliccione ◽  
Wei Zhang ◽  
Janis Timoshenko ◽  
K. W. Knehr ◽  
...  

Crystal and atomic structural changes of Fe3O4upon electrochemical (de)lithiation were determined.


Sign in / Sign up

Export Citation Format

Share Document