SiGe building blocks for on-chip X-Band T/R modules

Author(s):  
Tolga Dinc ◽  
Samet Zihir ◽  
Yasar Gurbuz
Keyword(s):  
X Band ◽  
Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 599
Author(s):  
Jerry R. Meyer ◽  
Chul Soo Kim ◽  
Mijin Kim ◽  
Chadwick L. Canedy ◽  
Charles D. Merritt ◽  
...  

We describe how a midwave infrared photonic integrated circuit (PIC) that combines lasers, detectors, passive waveguides, and other optical elements may be constructed on the native GaSb substrate of an interband cascade laser (ICL) structure. The active and passive building blocks may be used, for example, to fabricate an on-chip chemical detection system with a passive sensing waveguide that evanescently couples to an ambient sample gas. A variety of highly compact architectures are described, some of which incorporate both the sensing waveguide and detector into a laser cavity defined by two high-reflectivity cleaved facets. We also describe an edge-emitting laser configuration that optimizes stability by minimizing parasitic feedback from external optical elements, and which can potentially operate with lower drive power than any mid-IR laser now available. While ICL-based PICs processed on GaSb serve to illustrate the various configurations, many of the proposed concepts apply equally to quantum-cascade-laser (QCL)-based PICs processed on InP, and PICs that integrate III-V lasers and detectors on silicon. With mature processing, it should become possible to mass-produce hundreds of individual PICs on the same chip which, when singulated, will realize chemical sensing by an extremely compact and inexpensive package.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2198
Author(s):  
Zhichao Li ◽  
Shiheng Yang ◽  
Samuel B. S. Lee ◽  
Kiat Seng Yeo

For higher integration density, X-band power amplifiers (PAs) with CMOS technology have been widely discussed in recent publications. However, with reduced power supply voltage and device size, it is a great challenge to design a compact PA with high output power and power-added efficiency (PAE). In the proposed design, a 40-nm standard CMOS process is used for higher integration with other RF building blocks, compared with other CMOS PA designs with larger process node. Transistor cells are designed with neutralization capacitors to increase stability and gain performance of the PA. As a trade-off among gain, output power, and PAE, the transistor cells in driving stage and power stage are biased for class A and class AB operation, respectively. Both transistor cells consist of two transistors working in differential mode. Furthermore, transformer-based matching networks (TMNs) are used to realize a two-stage X-band CMOS PA with compact size. The PA achieves an effective conductivity (EC) of 117.5, which is among the highest in recently reported X-band PAs in CMOS technology. The PA also attains a saturated output power (Psat) of 20.7 dBm, a peak PAE of 22.4%, and a gain of 25.6 dB at the center frequency of 10 GHz under a 1 V supply in 40-nm CMOS.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 133
Author(s):  
Aleksandr Vasjanov ◽  
Vaidotas Barzdenas

Broadband amplifiers are essential building blocks used in high data rate wireless, radar, and instrumentation systems, as well as in optical communication systems. Only a traveling-wave amplifier (TWA) provides sufficient bandwidth for broadband applications without reducing modern linearization techniques. TWA requires gate-line and drain-line termination, which can be implemented on- and off-chip. This article compares the performance of identical 0.13 μm CMOS TWAs, differing only in gate-line termination placement. Measurement results revealed that the designed TWAs with on- and off-chip termination have a bandwidth of 10 GHz with a maximum gain of 15 dB and a power-added efficiency (PAE) of 5%–22% in the whole operating frequency range. Placing the gate-line termination off-chip results in an S21 flatness reduction, compared to the gain of a TWA with on-chip termination. Gain fluctuation over frequency is reduced by 4–8 dB when the termination resistor is placed as an external circuit.


Author(s):  
Nader Behdad ◽  
Dan Shi ◽  
Wonbin Hong ◽  
Kamal Sarabandi ◽  
Michael P. Flynn
Keyword(s):  
X Band ◽  

Sign in / Sign up

Export Citation Format

Share Document