Monte Carlo simulation of ultimate DGMOS based on a Pearson Effective Potential formalism

Author(s):  
M.-a. Jaud ◽  
S. Barraud ◽  
P. Dollfus ◽  
H. Jaouen ◽  
G. Carval
2001 ◽  
Vol 194-199 ◽  
pp. 453-460 ◽  
Author(s):  
P. Oramus ◽  
Rafal Abdank-Kozubski ◽  
Veronique Pierron-Bohnes ◽  
M.C. Cadeville ◽  
Carlo Massobrio ◽  
...  

2008 ◽  
Vol 55 (12) ◽  
pp. 3450-3458 ◽  
Author(s):  
Marie-Anne Jaud ◽  
Sylvain Barraud ◽  
JÉrÔme Saint-Martin ◽  
Arnaud Bournel ◽  
Philippe Dollfus ◽  
...  

2013 ◽  
Vol 22 (10) ◽  
pp. 1340023
Author(s):  
SHUFANG ZHU ◽  
KANGLIANG WEI ◽  
GANG DU ◽  
XIAOYAN LIU

Gate-All-Around (GAA) MOSFETs have been investigated as promising new device structures, and Germanium is used for its high carrier mobility. In this paper, a 3D parallel Monte Carlo simulation of GAA Ge nanowire nMOSFET with effective potential method is implemented. Compared the simulation results with classical results, we can see that the quantum effects affect on the distribution of density, velocity and energy, and they make a decrease on the drain current as well.


Author(s):  
Ryuichi Shimizu ◽  
Ze-Jun Ding

Monte Carlo simulation has been becoming most powerful tool to describe the electron scattering in solids, leading to more comprehensive understanding of the complicated mechanism of generation of various types of signals for microbeam analysis.The present paper proposes a practical model for the Monte Carlo simulation of scattering processes of a penetrating electron and the generation of the slow secondaries in solids. The model is based on the combined use of Gryzinski’s inner-shell electron excitation function and the dielectric function for taking into account the valence electron contribution in inelastic scattering processes, while the cross-sections derived by partial wave expansion method are used for describing elastic scattering processes. An improvement of the use of this elastic scattering cross-section can be seen in the success to describe the anisotropy of angular distribution of elastically backscattered electrons from Au in low energy region, shown in Fig.l. Fig.l(a) shows the elastic cross-sections of 600 eV electron for single Au-atom, clearly indicating that the angular distribution is no more smooth as expected from Rutherford scattering formula, but has the socalled lobes appearing at the large scattering angle.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


Sign in / Sign up

Export Citation Format

Share Document