Low power and low voltage SRAM design for LDPC codes hardware applications

Author(s):  
Rosalind Deena Kumari Selvam ◽  
C. Senthilpari ◽  
Lee Lini
Keyword(s):  
Author(s):  
Navneet Gupta ◽  
Adam Makosiej ◽  
Andrei Vladimirescu ◽  
Amara Amara ◽  
Costin Anghel
Keyword(s):  

2018 ◽  
Vol 7 (4.5) ◽  
pp. 645
Author(s):  
Sanket Jagadale ◽  
Aniket Phapale ◽  
T. V. Sai Varun Sasthry ◽  
V. S. Kanchana Bhaaskaran

Lowering power consumption and increasing the noise margin have become the two most important aspects to be considered in SRAM design. Additionally, a stable operation with good memory retention capability has gained greater importance in obtaining good yield at low-voltage and low-power SRAM designs, due to the fact that parameter variations play a major role in scaled technologies. In this paper, the 6T SRAM, 7T low power SRAM and 7T multi threshold low power SRAM designs are designed, to incorporate power gating technique. The architecture of each of the SRAM designs and their working are analyzed thoroughly. The outputs of the read, write and hold operations with transient response are observed and the power dissipation and static noise margin (SNM) of the each of the SRAM cells is calculated and compared. The paper also presents new power reduction solution through the cell control circuit which reduces the unwanted and spurious switching activities during read and writes operations. The paper demonstrates the reduction of the power con- sumption through the use of cell control circuit.   


2019 ◽  
Vol 8 (4) ◽  
pp. 10650-10653

The main aim of electronics is to design low power devices due to the prevalent usage of powered gadget. Ultra low voltage operation of memory cells has become a subject of a lot of interest because of its applications in terribly low energy computing. The stable operation of static random access memory (SRAM) is important for the success of low voltage SRAM and it is achieved by parameter variations of scaled technologies. The power consumption and access time of the SRAM is also a complex parameter due to the unavoidable switching activities of the number of transistors used for different blocks like, SRAM cell, access transistors, pre-charge circuit, sense amplifier and decoders. It has been shown that conventional 6T SRAM fail to achieve low power and delay operation. The proposed 10T SRAM design gives an approach towards the hold power dissipation. The designed circuit has 10 transistors out of that 2 transistors are used as sleep transistor. The sleep transistors are used as switches. Such as header and footer switches and the switches are turned on during active mode of operations and turned off during idle or standby mode of operations. The designed SRAM cell also has conducting pMOS circuit, which can reduces the total power dissipation. The SRAM cell is simulated by using Cadence tool. A supply voltage of 1.8V is used which makes it enough for low power applications. The power obtained as 761.7mW, which reduces 15% of conventional 6T SRAM design. The delay obtained as 125.6ns, which reduces 45% of conventional 6T SRAM.


2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 7-10 ◽  
Author(s):  
Subhashree Rath ◽  
Siba Kumar Panda

Static random access memory (SRAM) is an important component of embedded cache memory of handheld digital devices. SRAM has become major data storage device due to its large storage density and less time to access. Exponential growth of low power digital devices has raised the demand of low voltage low power SRAM. This paper presents design and implementation of 6T SRAM cell in 180 nm, 90 nm and 45 nm standard CMOS process technology. The simulation has been done in Cadence Virtuoso environment. The performance analysis of SRAM cell has been evaluated in terms of delay, power and static noise margin (SNM).


2014 ◽  
Vol 23 (08) ◽  
pp. 1450108 ◽  
Author(s):  
VANDANA NIRANJAN ◽  
ASHWANI KUMAR ◽  
SHAIL BALA JAIN

In this work, a new composite transistor cell using dynamic body bias technique is proposed. This cell is based on self cascode topology. The key attractive feature of the proposed cell is that body effect is utilized to realize asymmetric threshold voltage self cascode structure. The proposed cell has nearly four times higher output impedance than its conventional version. Dynamic body bias technique increases the intrinsic gain of the proposed cell by 11.17 dB. Analytical formulation for output impedance and intrinsic gain parameters of the proposed cell has been derived using small signal analysis. The proposed cell can operate at low power supply voltage of 1 V and consumes merely 43.1 nW. PSpice simulation results using 180 nm CMOS technology from Taiwan Semiconductor Manufacturing Company (TSMC) are included to prove the unique results. The proposed cell could constitute an efficient analog Very Large Scale Integration (VLSI) cell library in the design of high gain analog integrated circuits and is particularly interesting for biomedical and instrumentation applications requiring low-voltage low-power operation capability where the processing signal frequency is very low.


2021 ◽  
Vol 11 (2) ◽  
pp. 19
Author(s):  
Francesco Centurelli ◽  
Riccardo Della Sala ◽  
Pietro Monsurrò ◽  
Giuseppe Scotti ◽  
Alessandro Trifiletti

In this paper, we present a novel operational transconductance amplifier (OTA) topology based on a dual-path body-driven input stage that exploits a body-driven current mirror-active load and targets ultra-low-power (ULP) and ultra-low-voltage (ULV) applications, such as IoT or biomedical devices. The proposed OTA exhibits only one high-impedance node, and can therefore be compensated at the output stage, thus not requiring Miller compensation. The input stage ensures rail-to-rail input common-mode range, whereas the gate-driven output stage ensures both a high open-loop gain and an enhanced slew rate. The proposed amplifier was designed in an STMicroelectronics 130 nm CMOS process with a nominal supply voltage of only 0.3 V, and it achieved very good values for both the small-signal and large-signal Figures of Merit. Extensive PVT (process, supply voltage, and temperature) and mismatch simulations are reported to prove the robustness of the proposed amplifier.


Sign in / Sign up

Export Citation Format

Share Document