Design of an integer order PID controller for single fractional order pole model

Author(s):  
E. Yumuk ◽  
M. Guzelkaya ◽  
I. Eksin ◽  
C. Ulu
2009 ◽  
Author(s):  
Bijoy K. Mukherjee ◽  
Santanu Metia ◽  
Sio-Iong Ao ◽  
Alan Hoi-Shou Chan ◽  
Hideki Katagiri ◽  
...  

Author(s):  
Erhan Yumuk ◽  
Müjde Güzelkaya ◽  
İbrahim Eksin

In this study, we deal with systems that can be represented by single fractional order pole models and propose an integer order proportional–integral/proportional–integral–derivative controller design methodology for this class. The basic principle or backbone of the design methodology of the proposed controller relies on using the inverse of the fractional model and then approximating this fractional controller transfer function by a low integer order model using Oustaloup filter. The emerging integer order controller reveals itself either in pre-filtered proportional–integral or proportional–integral–derivative form by emphasizing on the dominancy concept of pole-zero configuration. Parameters of the proposed controllers depend on the parameters of the single fractional order pole model and the only free design parameter left is the overall controller gain. This free design parameter is determined via some approximating functions relying on an optimization procedure. Simulation results show that the proposed controller exhibits either satisfactory or better results with respect to some performance indices and time domain criteria when they are compared to classical integer order proportional–integral–derivative and fractional order proportional–integral–derivative controllers. Moreover, the proposed controller is applied to real-time liquid level control system. The application results show that the proposed controller outperforms the other controllers.


Author(s):  
Chunyang Wang ◽  
Meng Wu ◽  
Nianchun Cai ◽  
Xuelian Liu ◽  
Chengjun Tian

A design method of enhanced robust fractional order PID controller is proposed to control electrical machinery system. Magnitude margin constraint, phase margin constraint and the gain robustness constraints of partly flat phase in specified dots around crossover frequency are adopted to design enhanced robust fractional order PID controller which has stronger robustness to open-loop gain variation compared with integer order PID controller. Besides, nonlinear optimization function is adopted to hunt for optimal parameter solutions of enhanced robust fractional order PID controller, so the five parameters of enhanced robust fractional order PID controller can be solved. The electrical machinery control system models are simulated and tested by MATLAB/SIMULINK, and the results show that the proposed fractional order PID controller has stronger robustness and smaller overshoot, compared with integer order PID controller.


2014 ◽  
Vol 24 (2) ◽  
pp. 235-251 ◽  
Author(s):  
Sudalaiandi Sivananaithaperumal ◽  
Subramanian Baskar

Abstract This paper presents an automatic tuning of multivariable Fractional-Order Proportional, Integral and Derivative controller (FO-PID) parameters using Covariance Matrix Adaptation Evolution Strategy (CMAES) algorithm. Decoupled multivariable FO-PI and FO-PID controller structures are considered. Oustaloup integer order approximation is used for the fractional integrals and derivatives. For validation, two Multi-Input Multi- Output (MIMO) distillation columns described byWood and Berry and Ogunnaike and Ray are considered for the design of multivariable FO-PID controller. Optimal FO-PID controller is designed by minimizing Integral Absolute Error (IAE) as objective function. The results of previously reported PI/PID controller are considered for comparison purposes. Simulation results reveal that the performance of FOPI and FO-PID controller is better than integer order PI/PID controller in terms of IAE. Also, CMAES algorithm is suitable for the design of FO-PI / FO-PID controller.


2013 ◽  
Vol 278-280 ◽  
pp. 1521-1524
Author(s):  
Hai Qun Wang ◽  
Ling Meng

Since most of the control systems in real industrial production are fractional,there is necessery to propose fractional order PIλDμ controller, which extend the traditional integer-order PID controller to fractional order, it has increased two free degree: Integral-order λ and differential-order μ, to more accurately control those complex systems. At the same time analysis the performance of fractional order PIλDμ controller in frequency domain. Especially,the two degrees’ effect to controller.


2012 ◽  
Vol 490-495 ◽  
pp. 1145-1149 ◽  
Author(s):  
Yan Mei Wang ◽  
Yi Jie Liu ◽  
Rui Zhu ◽  
Yan Zhu Zhang

This paper discusses the fractional-order controller of heating-furnace system, a new PID controller of heating-furnace system based on fractional calculus will be considered. Classical PID control method is also studied. Then, this paper presents the fractional-order PID control method based on integer-order model of heating-furnace system. Meanwhile, simulation study is done. Comparing the control methods and strategies of integer order model of the heating-furnace system, a conclusion is drawn that PID control based on fractional calculus is much more complex than that of integer order controller. Numerical simulations are used to illustrate the improvements of the proposed controller for the integer-order heating-furnace systems.


Author(s):  
Fadhil A. Hasan ◽  
Lina J. Rashad

<span>This paper proposes the fractional-order proportional integral derivative (FOPID) controller, as a speed controller for permanent magnet direct current (PMDC) motor, instead of the traditional integer-order PID controller. The FOPID controller is the general form of the integer-order PID controllers, which found wide applications in all engineering fields. In this work a hybrid M-file and SIMULINK program is developed to simulate the overall system, the FOPID controller has five associated parameters. The optimum values of those parameters are found out by using particle swarm optimization technique. Simulation results show excellent command speeds tracking and superior dynamic response in conjunction with that of the integer-order PID controller. The proposed controller shows a high ability to overcome any external disturbance the system may be exposed; also, it performs a high degree of robustness to control the system in motoring and regenerative operating modes.</span>


2013 ◽  
Vol 367 ◽  
pp. 369-376 ◽  
Author(s):  
R. Karthikeyan ◽  
Sreekanth Pasam ◽  
S. Sudheer ◽  
Vallabhaneni Teja

Differentiation and integration of non-integer order have drawn increasing attention in research community. Fractional order dynamic systems have been recognized as effective tool for characterizing the real world phenomena. This may be implemented by using different control structures in which a fuzzy mechanism is adopted to tune the parameters by using Ziegler-Nichols method. Fractional-order PID control is the development of general integer-order PID controller. This paper proposes the basic framework of fractional order dynamic system with fuzzy weighted set-point. Comparisons are made with PID and FOPID controllers for first and second order systems. The response shows the superiority of the fuzzy set-point weighting methodology over the other methods.


Sign in / Sign up

Export Citation Format

Share Document