Evaluating Threshold Distance by Using Eigen Values and Analyzing Its Impact on the Performance of WBAN

Author(s):  
Monica Kaushik ◽  
Sindhu Hak Gupta ◽  
Vipin Balyan
2019 ◽  
Vol 10 (3) ◽  
pp. 565-573
Author(s):  
Keerthi G. Mirajkar ◽  
Bhagyashri R. Doddamani

2021 ◽  
Vol 13 (1) ◽  
pp. 651-662
Author(s):  
Jinping Luo ◽  
Guoxiang Huang ◽  
Yanni Shao ◽  
Jian Liu ◽  
Quanyi Xie

Abstract Plain reservoir plays an important role in alleviating water shortage in plain areas which are generally crowded with large populations. As an effective and cheap anti-seepage measure, geomembrane is widely applied in plain reservoirs. Therefore, it is necessary to investigate the seepage discharge caused by composite geomembrane leakage. The laboratory test and numerical calculation are carried out in this paper to analyze the influence of three factors (i.e., water head, leakage size, and leakage location) on seepage discharge. It is found from the results of the orthogonal and single-factor analysis that the impact order of the three factors on the seepage discharge of plain reservoir is: distance from dam toe > water head > leakage size. Moreover, the seepage discharge increases as the water head, leakage size, and leakage quantity increase, in a linear relation. The opposite trend can be sawed in the seepage discharge when the distance from dam toe rises. Furthermore, a threshold distance is innovatively presented based on the results of numerical analysis. The ranking of three factors has enlightening significance for future scholars to track and study key issues of the leakage of composite geomembrane. The threshold distance presented in this paper is beneficial for engineers to manage and maintain the reservoir. Generally, the findings of this study can be beneficial to deepen the understanding of the influence of composite geomembrane leakage on the plain reservoirs.


Author(s):  
Mahamet Koïta ◽  
Stanislas Kupin ◽  
Sergey Naboko ◽  
Belco Touré

Abstract Let $L^2({{\mathbb{D}}})$ be the space of measurable square-summable functions on the unit disk. Let $L^2_a({{\mathbb{D}}})$ be the Bergman space, that is, the (closed) subspace of analytic functions in $L^2({{\mathbb{D}}})$. $P_+$ stays for the orthogonal projection going from $L^2({{\mathbb{D}}})$ to $L^2_a({{\mathbb{D}}})$. For a function $\varphi \in L^\infty ({{\mathbb{D}}})$, the Toeplitz operator $T_\varphi : L^2_a({{\mathbb{D}}})\to L^2_a({{\mathbb{D}}})$ is defined as $$\begin{align*} & T_\varphi f=P_+\varphi f, \quad f\in L^2_a({{\mathbb{D}}}). \end{align*}$$The main result of this article are spectral asymptotics for singular (or eigen-) values of compact Toeplitz operators with logarithmically decaying symbols, that is, $$\begin{align*} & \varphi(z)=\varphi_1(e^{i\theta})\, (1+\log(1/(1-r)))^{-\gamma},\quad \gamma>0, \end{align*}$$where $z=re^{i\theta }$ and $\varphi _1$ is a continuous (or piece-wise continuous) function on the unit circle. The result is applied to the spectral analysis of banded (including Jacobi) matrices.


1966 ◽  
Vol 24 (2) ◽  
pp. 275-284
Author(s):  
R. A. Wentzell

Plumpton & Ferraro (1955) considered the torsional oscillations of an infinitely conducting sphere in a uniform magnetic field. They showed that if the fluid and magnetic viscosity were assumed to be zero in the governing differential equations, then a continuous spectrum of eigenvalues could be obtained. This novel feature was clarified by Stewartson (1957) when he obtained the exact solution and showed that in the correct limit of a perfect conductor the eigen-values are discrete. Furthermore, in the limit of infinite conductivity the oscillations occur only on the axis of symmetry (figure 1).


2016 ◽  
Vol 9 (4) ◽  
pp. 181 ◽  
Author(s):  
Farzana Rabin ◽  
Jhunu Shamsun Nahar ◽  
Mohammad S. I. Mullick ◽  
Helal Uddin Ahmed ◽  
Nafia Farzana

<p>The aim of this study was to develop a culturally adapted and validated Bangla version of Zarit Burden Interview  (ZBI-B) questionnaire for use in Bangla speaking caregiver of patient with dementia. This study was conducted on 100 caregivers related to consecutively attending outpatients with a previously established primary diagnosis of dementia, according to DSM-IV criteria. Validity and reliability were evaluated by comparing with the caregiver burden inventory (CBI). An exploratory factor analysis with the principle component with varimax rotation was used to detect the factorial structure in observed measurements. To attain the best-fitting structure and the correct number of factors, the following criteria were used: Eigen values &gt;1.0, factor loadings &gt;0.30. The Cronbach’s alpha value was 0.847 for test and 0.839 retest. The intra-class correlation for the test-retest reliability was 0.89. The ZBI score was highly correlated with the CBI score (Pearson’s correlation coefficient, r=0.909, P=.001). From the exploratory factor analysis six factors comprising 20 items were extracted with Eigen values higher than 1.00 accounting for 69% of the total item variance. In conclusion, ZBI-B is valid, reliable and useful for use in clinical contexts and in future studies that could lead to a better understanding of caregiver burden in dementia.</p>


2011 ◽  
Vol 110-116 ◽  
pp. 5240-5248
Author(s):  
Sujay Shelke ◽  
H.V. Vankudre ◽  
Vinay Patil

Typical seismic analysis using response spectrum method involves several steps from the initial step of extracting the modes. At the initial stage Eigen values are extracted corresponding to the modes of vibration. These give us Eigen vectors which are a series of relative displacement shapes; however these do not correspond to real displacements or stresses. Participation factors asses these Eigen vectors and grades them according to contribution they will have to the overall solution. Based on the spectral seismic acceleration, participation factor is used to calculate the mode coefficient, which is more of a scaling factor to give physical meaning to the values. Once the modes are extracted, the key issue is of combining these modes to obtain the seismic response. The modes cannot be added algebraically in reality as all the modes do not occur at the same time. Hence we employ methods which can add the modes in a more realistic manner. The objective of this paper is to do a comparative study of various mode combination methods with a focus on tank structures and study the effect of various geometrical parameters on the combination methods


2021 ◽  
Vol 4 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Fathallah Jabouti ◽  
Haddou El Ghazi ◽  
Redouane En-nadir ◽  
Izeddine Zorkani ◽  
Anouar Jorio

Based on the finite difference method, linear optical susceptibility, photoluminescence peak and binding energies of three first states of an exciton trapped by a positive charge donor-impurity ( ) confined in InN/AlN quantum well are investigated in terms of well size and impurity position. The electron, heavy hole free and bound excitons allowed eigen-values and corresponding eigen-functions are obtained numerically by solving one-dimensional time-independent Schrödinger equation. Within the parabolic band and effective mass approximations, the calculations are made considering the coupling of the electron in the n-th conduction subband and the heavy hole in the m-th valence subband under the impacts of the well size and impurity position. The obtained results show clearly that the energy, binding energy and photoluminescence peak energy show a decreasing behavior according to well size for both free and bound cases. Moreover, the optical susceptibility associated to exciton transition is strongly red-shift (blue-shifted) with enhancing the well size (impurity position).


Attendance taking and maintaining is a tedious job in the academic institutions where the time of class is restricted. The manual attendance i.e., roll call or paper-based signature systems usually consumes more time and error prone and also possibility of recording proxy attendance is more. Attendance is one of the criteria in considering students’ eligibility for attending the external examinations and also for the promotion to the next semester / year, where these kinds of problems may cause severe effect on the academic institutions. As the strength of students in a class is increasing day by day; monitoring, awarding and maintenance of attendance has becoming a challenge for the academic institutions. As a solution, attendance can be recorded using anyone of the existing biometric techniques like fingerprinting, iris recognition, signature, face recognition etc. Face identification is the best method among all the earlier mentioned methods for implementing in the academic institutions as it does not require human intervention and it is a cost-effective technique. A novel student attendance recording and management system using a MATLAB application, LabVIEW, Camera interface and GSM is proposed in this paper. Students’ faces will be captured with the help of a camera connected to a computer and Eigen values of the captured images will be detected with the help of MATLAB executed by LabVIEW Mathscript node. LabVIEW, a graphical programming environment is adopted for acquiring face, processing and authenticating the student once the match is found. Authenticated student attendance will be updated, and a message will be sent with the help of GSM module interface to myRIO. Proposed system replaces the manual attendance system which improves the performance of existing system.


2020 ◽  
Vol 24 (1) ◽  
pp. 30
Author(s):  
Yosef Robertus Utomo ◽  
Guntur Maruto ◽  
Agung Bambang Setio Utomo ◽  
Pekik Nurwantoro ◽  
Sholihun Sholihun

Calculation of energy eigen value of hydrogen negative ion (H − ) in 2p^2 configuration using the method of variation functions has been done. A work on H − can lead to calculations of electric multipole moments of a hydrogen molecule. The trial function is a linear combination of 8 expansion terms each of which is related to the Chandrasekhar’s basis. This work produces a series of 7 energy eigen values which converges to a value of −0.2468 whereas the value of this convergence is expected to be −0.2523. This deviation from the expected value is mainly due to the elimination of interelectronic distance (u) coordinate. The values of the exponent parameters used in this work contribute also to this deviation. This variational method will be applied to the construction of some energy eigen functions of Hv2 .


Sign in / Sign up

Export Citation Format

Share Document