An analysis of the heat pipe as a heat sink for solid-state RF sources

1970 ◽  
Vol 17 (11) ◽  
pp. 1013-1014 ◽  
Author(s):  
W.E. Wilson
Keyword(s):  
2021 ◽  
Vol 163 ◽  
pp. 698-719
Author(s):  
A. Ghanbarpour ◽  
M.J. Hosseini ◽  
A.A. Ranjbar ◽  
M. Rahimi ◽  
R. Bahrampoury ◽  
...  
Keyword(s):  

2014 ◽  
Vol 35 (11) ◽  
pp. 1394-1400
Author(s):  
周驰 ZHOU Chi ◽  
左敦稳 ZUO Dun-wen ◽  
孙玉利 SUN Yu-li

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5282
Author(s):  
Eui-Hyeok Song ◽  
Kye-Bock Lee ◽  
Seok-Ho Rhi ◽  
Kibum Kim

A concentric annular heat pipe heat sink (AHPHS) was proposed and fabricated to investigate its thermal behavior. The present AHPHS consists of two concentric pipes of different diameters, which create vacuumed annular vapor space. The main advantage of the AHPHS as a heat sink is that it can largely increase the heat transfer area for cooling compared to conventional heat pipes. In the current AHPHS, condensation takes place along the whole annular space from the certain heating area as the evaporator section. Therefore, the whole inner space of the AHPHS except the heating area can be considered the condenser. In the present study, AHPHSs of different diameters were fabricated and studied experimentally. Basic studies were carried out with a 50 mm-long stainless steel AHPHS with diameter ratios of 1.1 and 1.3 and the same inner tube diameter of 76 mm. Several experimental parameters such as volume fractions of 10–70%, different air flow velocity, flow configurations, and 10–50 W heat inputs were investigated to find their effects on the thermal performance of an AHPHS. Experimental results show that a 10% filling ratio was found to be the optimum charged amount in terms of temperature profile with a low heater surface temperature and water as the working fluid. For the methanol, a 40% filling ratio shows better temperature behavior. Internal working behavior shows not only circular motion but also 3-D flow characteristics moving in axial and circular directions simultaneously.


Author(s):  
Mitchell P. Hoesing ◽  
Gregory J. Michna

The ongoing development of faster and smaller electronic components has led to a need for new technologies to effectively dissipate waste thermal energy. The pulsating heat pipe (PHP) shows potential to meet this need, due to its high heat flux capacity, simplicity, and low cost. A 20-turn flat plate PHP was integrated into an aluminum flat plate heat sink with a simulated electronic load. The PHP heat sink used water as the working fluid and had 20 parallel channels with dimensions 2 mm × 2 mm × 119 mm. Experiments were run under various operating conditions, and thermal resistance of the PHP was calculated. The performance enhancement provided by the PHP was assessed by comparing the thermal resistance of the heat sink with no working fluid to that of it charged with water. Uncharged, the PHP was found to have a resistance of 1.97 K/W. Charged to a fill ratio of approximately 75% and oriented vertically, the PHP achieved a resistance of .49 K/W and .53 K/W when the condenser temperature was set to 20°C and 30°C, respectively. When the PHP was tilted to 45° above horizontal the PHP had a resistance of .76 K/W and .59 K/W when the condenser was set 20°C and 30°C, respectively. The PHP greatly improves the heat transfer properties of the heat sink compared to the aluminum plate alone. Additional considerations regarding flat plate PHP design are also presented.


Author(s):  
Damena Agonafer ◽  
Juan Ibarra ◽  
Kendrick McGee ◽  
Frank Platt ◽  
Kendall Harris ◽  
...  

The Heat Pipe Assisted Heat Sink (HPAHS) team will be working on solving challenging thermal management problems for a device known as the base transceiver station (BTS); a device used to transfer cell phone calls. This problem was raised due to transfer cell phone calls. This problem was raised due to the high use of cell phone in recent years. According to 2002 Scarborough Research, the number of cell phones in US was 180 million (2/3 of population). Due to this high increase in demand for cell phone usage, Replacement Handset Shipments are projected to increase worldwide from Current 40% of total shipments to almost 85%. This will increase from 211 million in 2002 to 591 million by 2008 (Nokia). Cell phone calls are transferred via a device known as the base transceiver station (BTS). Cell phone companies are increasing the performance of the BTS by adding more electronics. Nokia is increasing the current BTS performance by adding another power amplifier. We will encounter the problem of designing the thermal solution to ensure optimal thermal performance, while meeting customer requirements of cost and manufacturing process.


Author(s):  
Devdatta P. Kulkarni ◽  
Priyanka Tunuguntla ◽  
Guixiang Tan ◽  
Casey Carte

Abstract In recent years, rapid growth is seen in computer and server processors in terms of thermal design power (TDP) envelope. This is mainly due to increase in processor core count, increase in package thermal resistance, challenges in multi-chip integration and maintaining generational performance CAGR. At the same time, several other platform level components such as PCIe cards, graphics cards, SSDs and high power DIMMs are being added in the same chassis which increases the server level power density. To mitigate cooling challenges of high TDP processors, mainly two cooling technologies are deployed: Liquid cooling and advanced air cooling. To deploy liquid cooling technology for servers in data centers, huge initial capital investment is needed. Hence advanced air-cooling thermal solutions are being sought that can be used to cool higher TDP processors as well as high power non-CPU components using same server level airflow boundary conditions. Current air-cooling solutions like heat pipe heat sinks, vapor chamber heat sinks are limited by the heat transfer area, heat carrying capacity and would need significantly more area to cool higher TDP than they could handle. Passive two-phase thermosiphon (gravity dependent) heat sinks may provide intermediate level cooling between traditional air-cooled heat pipe heat sinks and liquid cooling with higher reliability, lower weight and lower cost of maintenance. This paper illustrates the experimental results of a 2U thermosiphon heat sink used in Intel reference 2U, 2 node system and compare thermal performance using traditional heat sinks solutions. The objective of this study was to showcase the increased cooling capability of the CPU by at least 20% over traditional heat sinks while maintaining cooling capability of high-power non-CPU components such as Intel’s DIMMs. This paper will also describe the methodology that will be used for DIMMs serviceability without removing CPU thermal solution, which is critical requirement from data center use perspective.


Sign in / Sign up

Export Citation Format

Share Document