An exact solution to the stabilization of discrete systems using a first-order controller

2005 ◽  
Vol 50 (9) ◽  
pp. 1375-1379 ◽  
Author(s):  
P. Yu ◽  
Z. Wu
Author(s):  
Gerhard G. G. Lueschen ◽  
Lawrence A. Bergman

Abstract A new approach to the exact solution is given for the free vibration of a periodic structure comprised of a multiplicity of identical linear distributed parameter substructures, closely coupled through identical linear springs. The method used is an extension of a classical result for periodic discrete systems.


2015 ◽  
Vol 3 (2) ◽  
pp. 117 ◽  
Author(s):  
V. K. Shchigolev ◽  
E. A. Semenova

<p>The new classes of homogeneous cosmological models for the scalar fields are build in the context of Lyra’s geometry. The different types of exact solution for the model are obtained by applying two procedures, viz the generating function method and the first order formalism.</p>


1969 ◽  
Vol 47 (21) ◽  
pp. 2401-2404 ◽  
Author(s):  
S. J. Wilson

An exact solution of the field equations of general relativity is obtained for a static, spherically symmetric distribution of charge and mass which can be matched with the Reissner–Nordström metric at the boundary. The self-energy contributions to the total gravitational mass are computed retaining only the first order terms in the gravitational constant.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
M. S. Ismail ◽  
Farida Mosally

The “good” Boussinesq equation is transformed into a first order differential system. A fourth order finite difference scheme is derived for this system. The resulting scheme is analyzed for accuracy and stability. Newton’s method and linearization techniques are used to solve the resulting nonlinear system. The exact solution and the conserved quantity are used to assess the accuracy and the efficiency of the derived method. Head-on and overtaking interactions of two solitons are also considered. The numerical results reveal the good performance of the derived method.


2021 ◽  
Vol 1 (2) ◽  
pp. 25-36
Author(s):  
Isah O. ◽  
Salawu S. ◽  
Olayemi S. ◽  
Enesi O.

In this paper, we develop a four-step block method for solution of first order initial value problems of ordinary differential equations. The collocation and interpolation approach is adopted to obtain a continuous scheme for the derived method via Shifted Chebyshev Polynomials, truncated after sufficient terms. The properties of the proposed scheme such as order, zero-stability, consistency and convergence are also investigated. The derived scheme is implemented to obtain numerical solutions of some test problems, the result shows that the new scheme competes favorably with exact solution and some existing methods.


Author(s):  
Valentin Fogang

This paper presents an exact solution to the Timoshenko beam theory (TBT) for first-order analysis, second-order analysis, and stability. The TBT covers cases associated with small deflections based on shear deformation considerations, whereas the Euler&ndash;Bernoulli beam theory (EBBT) neglects shear deformations. Thus, the Euler&ndash;Bernoulli beam is a special case of the Timoshenko beam. The moment-curvature relationship is one of the governing equations of the EBBT, and closed-form expressions of efforts and deformations are available in the literature. However, neither an equivalent to the moment-curvature relationship of EBBT nor closed-form expressions of efforts and deformations can be found in the TBT. In this paper, a moment-shear force-curvature relationship, the equivalent in TBT of the moment-curvature relationship of EBBT, was presented. Based on this relationship, first-order and second-order analyses were conducted, and closed-form expressions of efforts and deformations were derived for various load cases. Furthermore, beam stability was analyzed and buckling loads were calculated. Finally, first-order and second-order element stiffness matrices were determined.


1992 ◽  
Vol 152 ◽  
pp. 391-394
Author(s):  
T. J. Stuchi ◽  
W. Sessin

We construct a two step algebraic mapping from Sessin's simplified model for the first order resonance. The orbits obtained with this mapping are compared to the ones calculated with the exact solution. We also derive a reduced Hamiltonian. A plane Poincaré mapping, using delta periodic function, is constructed and compared to the reduced Hamiltonian contour curves showing the splitting of the separatrix due to delta perturbation technique.


Sign in / Sign up

Export Citation Format

Share Document