1-Bit Reconfigurable Unit Cell Based on PIN Diodes for Transmit-Array Applications in $X$-Band

2012 ◽  
Vol 60 (5) ◽  
pp. 2260-2269 ◽  
Author(s):  
Antonio Clemente ◽  
Laurent Dussopt ◽  
Ronan Sauleau ◽  
Patrick Potier ◽  
Philippe Pouliguen
Keyword(s):  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Biswarup Rana ◽  
In-Gon Lee ◽  
Ic-Pyo Hong

In this paper, an electronically reconfigurable polarization converter unit cell operating at X-band is proposed. The polarization converter unit cell consists of a passive patch, a phase shifter, and an active patch. There are two PIN diodes on the active patch. By switching the bias conditions of those PIN diodes, an electronically reconfigurable polarization converter is conceived. Both the passive and active patches are circular, and there are circular types of slots on both patches to enhance the operating bandwidth. To compensate for the capacitance introduced by PIN diodes, an equivalent capacitance structure is introduced on the active patch. 2 × 2 unit cells are designed to check the performance of the unit cell for polarization conversion applications. In addition, a novel type of experimental characterization technique is proposed to check the performance of polarization conversion using 2 × 2 unit cells. Two WR-90 waveguide sections, two rectangular to square sections, and a power supply are taken for the measurements. The rectangular to square waveguide transition section is designed in such a way so that 2 × 2 unit cells can be perfectly adjusted on the transition section and the performance of the 2 × 2 unit cells can be measured. The simulation results of the 8 × 8 array are also added to a miniaturized X-band horn antenna to check the performance of the overall array.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 476
Author(s):  
Umer Farooq ◽  
Adnan Iftikhar ◽  
Muhammad Farhan Shafique ◽  
Muhammad Saeed Khan ◽  
Adnan Fida ◽  
...  

This paper presents a highly compact frequency-selective surface (FSS) that has the potential to switch between the X-band (8 GHz–12 GHz) and C-band (4 GHz–8 GHz) for RF shielding applications. The proposed FSS is composed of a square conducting loop with inward-extended arms loaded with curved extensions. The symmetric geometry allows the RF shield to perform equally for transverse electric (TE), transverse magnetic (TM), and 45° polarizations. The unit cell has a dimension of 0.176 λ0 and has excellent angular stability up to 60°. The resonance mechanism was investigated using equivalent circuit models of the shield. The design of the unit element allowed incorporation of PIN diodes between adjacent elements for switching to a lower C-band spectrum at 6.6 GHz. The biasing network is on the bottom layer of the substrate to avoid effects on the shielding performance. A PIN diode configuration for the switching operation was also proposed. In simulations, the PIN diode model was incorporated to observe the switchable operation. Two prototypes were fabricated, and the switchable operation was demonstrated by etching copper strips on one fabricated prototype between adjacent unit cells (in lieu of PIN diodes) as a proof of the design prototypes. Comparisons among the results confirmed that the design offers high angular stability and excellent performance in both bands.


Author(s):  
D. Dinh Le ◽  
B. D. Nguyen ◽  
M. Thien Nguyen ◽  
Van Su Tran
Keyword(s):  

Author(s):  
Yu Xiao ◽  
Bin Xi ◽  
Meng Xiang ◽  
Fan Yang ◽  
Zengping Chen
Keyword(s):  

Author(s):  
I.D. Saiful Bahri ◽  
Z. Zakaria ◽  
N. A. Shairi ◽  
N. Edward

<span>This paper proposed an UWB antenna with triple reconfigurable notch filters. By presenting there U-shaped coppers in the design, the potential triple interference in UWB applications can be rejected. Six PIN diodes are putted on the coppers to represent the OFF and ON tunable status in order to add reconfigurable characteristics to the UWB antenna. By using this ON and OFF tunable method, the current distribution of the proposed design changes and enables the antenna to have eight operation modes. The results prove that the proposed design can operate over the entire UWB frequency range (3.1 GHz to 10.6 GHz) and can filter out the target signals from the WLAN upper band (5.725 to 5.825 GHz), WLAN lower band (5.15 to 5.35 GHz) and X band frequency system (7.9 to 8.4 GHz) in one of the tunable configurations.</span>


2020 ◽  
Vol 9 (6) ◽  
pp. 2443-2448
Author(s):  
M. G. Mustapha ◽  
M. K. A. Rahim ◽  
N. A. Murad ◽  
O. Ayop ◽  
S. Tuntrakool ◽  
...  

A unit cell of squared shaped polarization-insensitive switchable metamaterial absorber/reflector is presented. The structure operates at 10.20 GHz under both absorber mode and reflector mode configurations. Copper wire bridging the gaps to form a circular shape structure were used as switches for operation mode selections. The structure was designed on an FR4 substrate, and the incidental wave angles were varied from 0 to 50 degrees. The structure demonstrated almost 100% absorption at resonance, 3.314 GHz percentage bandwidth at 80% as an absorber. On the other hand, as reflector, it demonstrated almost a 90% reflection and a usable bandwidth of 3.327 GHz.


2015 ◽  
Vol 16 (2) ◽  
pp. 281
Author(s):  
Tariq Rahim ◽  
Jiodong Xu

A low profile multi layer miniaturized unit cell frequency selective surface (FSS) with second-order band-pass response is design. The metallic layers in the form of capacitive patches and inductive grids are separated by dielectric substrates. The non-resonant sub-wavelength unit cells with unit cell dimensions and periodicities on the order of 0.15λ. The overall thickness of approximately 0.03λ is designed which is useful at lower frequencies with long wavelengths. The FSS exhibit a stable frequency response to different angles of incidence and polarizations. The analysis and synthesis of the FSS is done using equivalent circuit method and simulated using CST microwave studio at X-band.


Circuit World ◽  
2019 ◽  
Vol 46 (1) ◽  
pp. 25-31
Author(s):  
Kanchana D. ◽  
Radha Sankararajan ◽  
Sreeja B.S. ◽  
Manikandan E.

Purpose A novel low profile frequency selective surface (FSS) with a band-stop response at 10 GHz is demonstrated. The purpose of this designed FSS structure is to reject the X-band (8-12 GHz) for the application of shielding. The proposed FSS structure having the unit cell dimension of 8 × 8 mm2, the miniaturization of the FSS unit cell in terms of λ0 is 0.266 λ0 × 0.266 λ0, where λ0 is free space wavelength. The designed FSS provides 4 GHz bandwidth with insertion loss of 15 dB. The transverse electric (TE) and transverse magnetic (TM) modes of the proposed design are same because of polarization independent characteristics and hold the angularly stable frequency response for both TE and TM mode polarization. Both the simulation and measurement results are in good agreement to each other. Design/methodology/approach The proposed FSS design contains square-shaped PEC material, which is placed on the substrate and the shape of the circle and rectangle is etched over the PEC material. The PEC material of the patch dimension is 0.0175 mm. The substrate used for the proposed design is FR4 lossy with the thickness of 0.8 mm and permittivity εr = 4.3 having a loss tangent of 0.02. Findings To find a new design and miniaturized FSS structure is discussed. Originality/value 100%


Sign in / Sign up

Export Citation Format

Share Document