Tilted-Beam High Gain Antenna System Composed of a Patch Antenna and Periodically Arrayed Loops

2014 ◽  
Vol 62 (6) ◽  
pp. 2917-2925 ◽  
Author(s):  
Hisamatsu Nakano ◽  
Subaru Mitsui ◽  
Junji Yamauchi
Author(s):  
Haisheng Hou ◽  
Haipeng Li ◽  
Guangming Wang ◽  
Tong Cai ◽  
Xiangjun Gao ◽  
...  

Recently, metasurfaces (MSs) have received tremendous attention because their electromagnetic properties can be controlled at will. Generally, metasurface with hyperbolic phase distributions, namely, focusing metasurface, can be used to design high-gain antennas. Besides, metasurface has the ability of controlling the polarization state of electromagnetic wave. In this chapter, we first propose a new ultrathin broadband reflected MS and take it into application for high-gain planar antenna. Then, we propose multilayer multifunctional transmitted MSs to simultaneously enhance the gain and transform the linear polarization to circular polarization of the patch antenna. This kind of high-gain antenna eliminates the feed-block effect of the reflected ones.


2019 ◽  
Vol 11 (08) ◽  
pp. 829-834 ◽  
Author(s):  
Zihang Qi ◽  
Xiuping Li ◽  
Jinjin Chu ◽  
Jun Xiao ◽  
Hua Zhu

AbstractIn this paper, high-gain cavity backed patch antenna arrays are proposed based on low temperature co-fired ceramic technology at 140 GHz. By introducing a substrate integrated cavity to the patch antenna element, the gain is enhanced by 3.3 dB. Moreover, a rectangular ring is loaded around the patch for better impedance matching and further gain enhancement. The final simulated maximum gain of the proposed antenna element is 9.8 dBi. Based on the proposed high-gain antenna element, a 4 × 4-element array and an 8 × 8- element array are presented. The 4 × 4-element array shows a measured maximum gain of 16.9 dBi with 9.5 GHz bandwidth (136.2–145.7 GHz) and the 8 × 8-element array shows a measured maximum gain of 21.8 dBi with 9.8 GHz bandwidth(136.7–146.5 GHz), respectively.


2015 ◽  
Vol 14 ◽  
pp. 434-437 ◽  
Author(s):  
Augusto Nascetti ◽  
Erika Pittella ◽  
Paolo Teofilatto ◽  
Stefano Pisa

Sign in / Sign up

Export Citation Format

Share Document