Modern Printed-Circuit Antennas
Latest Publications


TOTAL DOCUMENTS

9
(FIVE YEARS 9)

H-INDEX

1
(FIVE YEARS 1)

Published By Intechopen

9781838808570, 9781838808587

Author(s):  
Nikolay Atanasov ◽  
Gabriela Atanasova ◽  
Blagovest Atanasov

This chapter provides a brief overview of the types of wearable antennas with high body-antenna isolation. The main parameters and characteristics of wearable antennas and their design requirements are discussed. Next, procedures (passive and active) to test the performance of wearable antennas are presented. The electromagnetic properties of the commercially available textiles used as antenna substrates are investigated and summarized here, followed by a more detailed examination of their effects on the performance of wearable antennas with high body-antenna isolation. A trade-off between substrate electromagnetic properties and resonant frequency, bandwidth, radiation efficiency, and maximum gain is presented. Finally, a case study is presented with detailed analyses and investigations of the low-profile all-textile wearable antennas with high body-antenna isolation and low SAR. Their interaction with a semisolid homogeneous human body phantom is discussed. The simulations and experimental results from different (in free-space and on-body) scenarios are presented.


Author(s):  
Ashish Singh ◽  
Krishnananda Shet ◽  
Durga Prasad

In this chapter, ultra wide band angular ring antenna has been proposed for wireless applications. It has been observed that antenna resonate from 2.9 to 13.1 GHz which has 10.2 GHz bandwidth. Further, it is observed that antenna has nearly omni-directional radiation pattern for E and H-plane at 3.5, 5.8, and 8.5 GHz. The theoretical analysis of the proposed has been done using circuit theory analysis. It was also found using simulation that antenna has good input and output response of 0.2 ns. Proposed antenna measured, simulated, and theoretical results matches for antenna characteristics, i.e., reflection coefficient and radiation pattern. Bandwidth of antenna lies between 2.9 and 13.1 GHz, so this antenna is suitable for Wi-Fi, Wi-Max, digital communication system (DCS), satellite communication, and 5G applications.


Author(s):  
Chung-Tse Michael Wu ◽  
Pai-Yen Chen

In this chapter, we will review recent research advances on beamforming and spatial multiplexing techniques using reconfigurable metamaterials (MTMs) and metasurfaces. This chapter starts by discussing basic principles and practical applications of transmission line-based metamaterials and planar metasurfaces, followed by their active versions that enable novel smart antennas with beam steering and beamshaping functions. We include detailed descriptions of their practical realizations and the integration with circuits and the radio-frequency (RF) frontend, which are used to adaptively and dynamically manipulate electromagnetic radiation. We summarize the state-of-the-art MTM/metasurface-based beamforming techniques and provide a critical comparison for their uses in the RF-to-millimeter-wave range in terms of cost, reconfigurability, system integratability and radiation properties. These techniques are expected to pave the way for the massive deployment of communication, radar, remote sensing and medical and security imaging systems.


Author(s):  
Haisheng Hou ◽  
Haipeng Li ◽  
Guangming Wang ◽  
Tong Cai ◽  
Xiangjun Gao ◽  
...  

Recently, metasurfaces (MSs) have received tremendous attention because their electromagnetic properties can be controlled at will. Generally, metasurface with hyperbolic phase distributions, namely, focusing metasurface, can be used to design high-gain antennas. Besides, metasurface has the ability of controlling the polarization state of electromagnetic wave. In this chapter, we first propose a new ultrathin broadband reflected MS and take it into application for high-gain planar antenna. Then, we propose multilayer multifunctional transmitted MSs to simultaneously enhance the gain and transform the linear polarization to circular polarization of the patch antenna. This kind of high-gain antenna eliminates the feed-block effect of the reflected ones.


Author(s):  
Yasir I.A. Al-Yasir ◽  
Hasanain A.H. Al-Behadili ◽  
Baha A. Sawadi ◽  
Naser Ojaroudi Parchin ◽  
Ahmed M. Abdulkhaleq ◽  
...  

Reconfigurable beam steering using circular disc microstrip patch antenna with a ring slot is proposed. The overall dimension of the antenna is 5.4 × 5.4 mm2 printed on 0.504 mm thick, RT5870 substrate with relative permittivity 2.3 and loss tangent 0.0012. The designed antenna operates at the expected 60 GHz 5G frequency band with a central coaxial probe feed. Two NMOS switches are utilized to generate three different beam patterns. Activating each switch individually results in a 70° shift in the main beam direction with constant frequency characteristics. The power gain is 3.9–4.8 dB in the three states of switch configurations. Simulated results in terms of return loss, peak gains and radiation pattern are presented and show good performance at the expected 60 GHz band for 5G applications.


Author(s):  
Hussain Al-Rizzo ◽  
Ayman A. Isaac ◽  
Sulaiman Z. Tariq ◽  
Samer Yahya

This chapter introduces a novel design concept to reduce mutual coupling among closely-spaced antenna elements of a MIMO array. This design concept significantly reduces the complexity of traditional/existing design approaches such as metamaterials, defected ground plane structures, soft electromagnetic surfaces, parasitic elements, matching and decoupling networks using a simple, yet a novel design alternative. The approach is based on a planar single decoupling element, consisting of a rectangular metallic ring resonator printed on one face of an ungrounded substrate. The decoupling structure surrounds a two-element vertical monopole antenna array fed by a coplanar waveguide structure. The design is shown both by simulations and measurements to reduce the mutual coupling by at least 20 dB, maintain the impedance bandwidth over which S11, is less than −10 dB, and reduce the envelope correlation coefficient to below 0.001. The boresight of the far-field radiation patterns of the two vertical monopole wire antennas operating at 2.4 GHz and separated by 8 mm (λo/16), where λo is the free-space wavelength at 2.45 GHz, is shown to be orthogonal and inclined by 45° with respect to the horizontal (azimuthal) plane while maintaining the shape of the isolated single antenna element.


Author(s):  
Yu Hongbiao

Noise figure and noise power are detailedly analyzed and deduced in theory for multi-port network in active phased array radar. The mathematical expressions of output noise power and noise figure of network are given out under various conditions. Accordingly, this provides a basis of theories for multi-port network and radar receiver system design, the test method of array noise figure. Finally, two application examples are given to verify the accuracy of the formulae. Making use of these formulas, the designer can use to calculate the dynamic range of the radar receive system, and the designer can also constitute a measure scheme of the array noise figure for active phased array radar.


Author(s):  
Jafar Ramadhan Mohammed ◽  
Karam Mudhafar Younus

In this chapter, several planar array designs based on the use of a small number of the active elements located at the center of the planar array surrounded by another number of the uniformly distributed parasitic elements are investigated. The parasitic elements are used to modify the radiation pattern of the central active elements. The overall radiation pattern of the resulting planar array with a small number of active elements is found to be comparable to that of the fully active array elements with a smaller sidelobe level (SLL) at the cost of a relatively wider beamwidth and lower directivity. Nevertheless, the uses of only a small number of the active elements provide a very simple feeding network that reduces the cost and the complexity of the array. Simulation results which have been computed using computer simulation technology-microwave studio (CST-MWS) show that the sidelobe level of the designed array pattern with parasitic elements is considerably better than that of the similar fully active array elements. The proposed array can be effectively and efficiently used in the applications that require wider antenna beams.


Author(s):  
Amer T. Abed ◽  
Mahmood J. Abu-AlShaer ◽  
Aqeel M. Jawad

When the length of the antenna is less than a quarter of the wavelength of the operating frequency, good radiation properties are difficult to obtain. However, size limitations can be overcome in this case using a fractal geometry antenna. The shape is repeated in a limited size such that the total length of the antenna is increased to match, for example, half of the wavelength of the corresponding desired frequency. Many fractal geometries, e.g., the tree, Koch, Minkowski, and Hilbert fractals, are available. This chapter describes the details of designing, simulations, and experimental measurements of fractal antennas. Based on dimensional geometry in terms of desired frequency bands, the characteristics of each iteration are studied carefully to improve the process of designing the antennas. In depth, the surface current distribution is investigated and analyzed to enhance the circular polarization radiation and axial ratio bandwidth (ARBW). Both, simulation and experimental, results are discussed and compared. Two types of fractal antennas are proposed. The first proposed fractal antenna has a new structure configured via a five-stage process. The second proposed fractal antenna has a low profile, wherein the configuration of the antenna was based on three iterations.


Sign in / Sign up

Export Citation Format

Share Document