The "Paradisc" antenna--A novel technique to improve the axial ratio of a circularly polarized high gain antenna system

1973 ◽  
Vol 21 (1) ◽  
pp. 108-110 ◽  
Author(s):  
R. Silberberg
Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 400 ◽  
Author(s):  
Wei Hu ◽  
Guangjun Wen ◽  
Daniele Inserra ◽  
Yongjun Huang ◽  
Jian Li ◽  
...  

A 2 × 2 circularly polarized (CP) sequential rotation microstrip patch antenna array with high gain for long-range ultra-high frequency (UHF) radio frequency identification (RFID) communication is proposed in this paper. In order to meet the operational frequency band requirement of 840–960 MHz and, at the same time, achieve enhanced broadside gain, a two-level sequential rotation structure is developed. Series power divider is used as the basic element of the feed network that is implemented with the substrate-integrated coaxial line technology for minimizing radiation losses. The manufactured prototype exhibits a peak gain of 12.5 dBic at 900 MHz and an axial ratio (AR) bandwidth (AR ≤ 3 dB) of 18.2% from 828 to 994 MHz. In comparison with the state-of-the-art, the proposed antenna shows an excellent gain/size trade-off.


2021 ◽  
Vol 11 (19) ◽  
pp. 8869
Author(s):  
Manzoor Elahi ◽  
Son Trinh-Van ◽  
Youngoo Yang ◽  
Kang-Yoon Lee ◽  
Keum-Cheol Hwang

In this article, a high gain and compact 4 × 4 circularly polarized microstrip patch antenna array is reported for the data transmission of the next-generation small satellite. The radiating element of the circularly polarized antenna array is realized by the conventional model of the patch with truncated corners. A compact two-stage sequential rotational phase feeding is adopted that broadens the operating bandwidth of the 4 × 4 array. A small stub is embedded in the sequential rotational feed, which results in better performance in terms of the S-parameters and sequential phases at the output ports than sequential rotational feed without open stub. A prototype of the array is fabricated and measured. Fulfilling the application requirements of the next-generation small satellites, the array has the left-handed circularly polarized gain of more than 12 dBic with the axial ratio level below 1.5 dB in the ±10∘ angular space with respect to the broadside direction for the whole bandwidth from 8.05 GHz to 8.25 GHz. Moreover, the left-handed circularly polarized gain varies from 15 to 15.5 dBic in the desired band. The radiation patterns are measured; both the co- and X-pol are validated.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7411
Author(s):  
Hong Quang Nguyen ◽  
Minh Thuy Le

In this work toward a sustainable operation of a self-powered wireless sensor, we investigated a multiband Wi-Fi/3G/4G/5G energy harvester based on a novel wideband circularly polarized antenna, a quadplexer, and rectifiers at four corresponding bands. This proposed antenna consisted of four sequentially rotated dual-dipoles, fed by a hybrid feeding network with equal amplitude and an incremental 90° phase delay. The feeding network was composed of three Wilkinson power dividers and Schiffman phase shifters. Based on the sequential rotation method, the antenna obtained a −10 dB reflection coefficient bandwidth of 71.2% from 1.4 GHz to 2.95 GHz and a 3 dB axial ratio (AR) bandwidth of 63.6%, from 1.5 GHz to 2.9 GHz. In addition, this antenna gain was higher than 6 dBi in a wide bandwidth from 1.65 GHz to 2.8 GHz, whereas the peak gain was 9.9 dBi. The quad-band rectifier yielded the maximum AC–DC conversion efficiency of 1.8 GHz and was 60% at −1 dBm input power, 2.1 GHz was 55% at 0 dBm, 2.45 GHz was 55% at −1 dBm, and 2.6 GHz was 54% at 0.5 dBm, respectively. The maximum RF–DC conversion efficiency using the wideband circularly polarized antenna was 27%, 26%, 25.5%, and 27.5% at −6 dBm of input power, respectively.


A single feed microstrip patch elliptically annular antenna array has been proposed for high gain circularly polarized (CP) radiation. An array of elliptically annular patches antenna resonates at a frequency of 3.77 GHz which can be used in satellite communication and radar application. A corporate feed network with quarter-wave transformer has been used for uniform excitation of all the array elements. Thus a good circular polarization is obtained by using a single feed with enhanced gain 15.62 dB compared to single patch. The radiation pattern, axial ratio and input impedance of the proposed elliptically annular antenna array is compared with single element elliptically annular antenna. A substantial gain enhancement with low side lobe level (SLL) is observed keeping circular polarization intact. Further, simulated and measured results of the proposed antenna array have been compared and found that axial ratio and gain are in good agreement.


2012 ◽  
Vol 129 ◽  
pp. 365-385 ◽  
Author(s):  
Ping Wang ◽  
Guangjun Wen ◽  
Jian Li ◽  
Yongjun Huang ◽  
Liu Yang ◽  
...  

2016 ◽  
Vol 9 (3) ◽  
pp. 697-703 ◽  
Author(s):  
Nagendra Kushwaha ◽  
Raj Kumar

This paper presents a high gain, wideband circularly polarized (CP) antenna. High gain of the antenna is achieved by employing a frequency selective surface (FSS) as a reflector. The antenna is a coplanar waveguide-fed structure with a modified L-shaped radiating patch. The unit element of the FSS is formed by connecting two modified dipoles at an angle of 90°. The antenna with reflector has a measured impedance bandwidth of 74.3% (2.2–4.8 GHz) and a 3-dB axial ratio bandwidth (ARBW) of 62% (2.2–4.18 GHz). The maximum boresight gain of the proposed antenna with reflector is 7.1 dB at 3.4 GHz. The radiation patterns of the antenna with the FSS are also measured and compared with simulated patterns. The various aspects of effect of FSS on CP antenna performance are also discussed.


Sign in / Sign up

Export Citation Format

Share Document