Research on Measurement of Transformer Short-circuit Force Using Piezoelectric Thin Film Polyvinylidene Fluoride Sensor

Author(s):  
Yan Li ◽  
Tiannan Meng ◽  
Bingbing Hou ◽  
Xuejuan Zhang ◽  
Yongteng Jing
2012 ◽  
Vol 23 (10) ◽  
pp. 1119-1130 ◽  
Author(s):  
Lei Ma ◽  
Shreyes N Melkote ◽  
John B Morehouse ◽  
James B Castle ◽  
James W Fonda ◽  
...  

Thin-film polyvinylidene fluoride piezoelectric sensors have long been recognized as a promising alternative to traditional metal foil strain gauges in applications where only dynamic or quasistatic signals are of interest. Compared to metal foil strain gauges, polyvinylidene fluoride sensors feature high sensitivity, high dynamic range, and broad frequency bandwidth. However, transverse sensitivity of the polyvinylidene fluoride sensor is higher than that of a metal foil strain gauge, making it more difficult to isolate a particular strain component or a deformation mode when the host structure is under complex loading. In addition, polyvinylidene fluoride films are sensitive to changes in ambient temperature due to the pyroelectric effect. In this article, three temperature-compensated polyvinylidene fluoride sensor rosette designs are proposed for isolating specific strain component(s) and deformation mode(s) of interest. First-principles based models are derived to relate the polyvinylidene fluoride sensor rosette output to the actual elastic strain component of interest. Experimental validation is conducted to verify the proposed models and to compare the performance of the polyvinylidene fluoride sensor rosettes with their metal foil strain gauge counterparts.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 585
Author(s):  
Ariel Ma ◽  
Jian Yu ◽  
William Uspal

Natural evaporation has recently come under consideration as a viable source of renewable energy. Demonstrations of the validity of the concept have been reported for devices incorporating carbon-based nanocomposite materials. In this study, we investigated the possibility of using polymer thin films to generate electricity from natural evaporation. We considered a polymeric system based on polyvinylidene fluoride (PVDF). Porous PVDF films were created by incorporating a variety of nanocomposite materials into the polymer structure through a simple mixing procedure. Three nanocomposite materials were considered: carbon nanotubes, graphene oxide, and silica. The evaporation-induced electricity generation was confirmed experimentally under various ambient conditions. Among the nanocomposite materials considered, mesoporous silica (SBA-15) was found to outperform the other two materials in terms of open-circuit voltage, and graphene oxide generated the highest short-circuit current. It was found that the nanocomposite material content in the PVDF film plays an important role: on the one hand, if particles are too few in number, the number of channels will be insufficient to support a strong capillary flow; on the other hand, an excessive number of particles will suppress the flow due to excessive water absorption underneath the surface. We show that the device can be modeled as a simple circuit powered by a current source with excellent agreement between the theoretical predictions and experimental data.


2021 ◽  
Vol 47 (11) ◽  
pp. 16029-16036
Author(s):  
Masato Uehara ◽  
Yuki Amano ◽  
Sri Ayu Anggraini ◽  
Kenji Hirata ◽  
Hiroshi Yamada ◽  
...  

2021 ◽  
Vol 327 ◽  
pp. 112786
Author(s):  
Kazuki Ueda ◽  
Sang-Hyo Kweon ◽  
Hirotaka Hida ◽  
Yoshiharu Mukouyama ◽  
Isaku Kanno

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Nils Neugebohrn ◽  
Norbert Osterthun ◽  
Maximilian Götz-Köhler ◽  
Kai Gehrke ◽  
Carsten Agert

AbstractOxide/metal/oxide (OMO) layer stacks are used to replace transparent conductive oxides as front contact of thin-film solar cells. These multilayer structures not only reduce the overall thickness of the contact, but can be used for colouring of the cells utilizing interference effects. However, sheet resistance and parasitic absorption, both of which depend heavily on the metal layer, should be further reduced to reach higher efficiencies in the solar cells. In this publication, AgOX wetting layers were applied to OMO electrodes to improve the performance of Cu(In,Ga)Se2 (CIGS) thin-film solar cells. We show that an AgOX wetting layer is an effective measure to increase transmission and conductivity of the multilayer electrode. With the presented approach, we were able to improve the short-circuit current density by 18% from 28.8 to 33.9 mA/cm2 with a metal (Ag) film thickness as low as 6 nm. Our results highlight that OMO electrodes can be an effective replacement for conventional transparent conductive oxides like aluminium-doped zinc oxide on thin-film solar cells.


Sign in / Sign up

Export Citation Format

Share Document