Unloaded Quality Factor of Transmission Line Resonators With Capacitors

2020 ◽  
Vol 67 (7) ◽  
pp. 2204-2215
Author(s):  
Alexander Zakharov ◽  
Michael Ilchenko
2017 ◽  
Vol 26 (05) ◽  
pp. 1750075 ◽  
Author(s):  
Najam Muhammad Amin ◽  
Lianfeng Shen ◽  
Zhi-Gong Wang ◽  
Muhammad Ovais Akhter ◽  
Muhammad Tariq Afridi

This paper presents the design of a 60[Formula: see text]GHz-band LNA intended for the 63.72–65.88[Formula: see text]GHz frequency range (channel-4 of the 60[Formula: see text]GHz band). The LNA is designed in a 65-nm CMOS technology and the design methodology is based on a constant-current-density biasing scheme. Prior to designing the LNA, a detailed investigation into the transistor and passives performances at millimeter-wave (MMW) frequencies is carried out. It is shown that biasing the transistors for an optimum noise figure performance does not degrade their power gain significantly. Furthermore, three potential inductive transmission line candidates, based on coplanar waveguide (CPW) and microstrip line (MSL) structures, have been considered to realize the MMW interconnects. Electromagnetic (EM) simulations have been performed to design and compare the performances of these inductive lines. It is shown that the inductive quality factor of a CPW-based inductive transmission line ([Formula: see text] is more than 3.4 times higher than its MSL counterpart @ 65[Formula: see text]GHz. A CPW structure, with an optimized ground-equalizing metal strip density to achieve the highest inductive quality factor, is therefore a preferred choice for the design of MMW interconnects, compared to an MSL. The LNA achieves a measured forward gain of [Formula: see text][Formula: see text]dB with good input and output impedance matching of better than [Formula: see text][Formula: see text]dB in the desired frequency range. Covering a chip area of 1256[Formula: see text][Formula: see text]m[Formula: see text]m including the pads, the LNA dissipates a power of only 16.2[Formula: see text]mW.


1999 ◽  
Vol 14 (2) ◽  
pp. 500-502
Author(s):  
Seungbum Hong ◽  
Eunah Kim ◽  
Han Wook Song ◽  
Jongwan Choi ◽  
Dae-Weon Kim ◽  
...  

It has been generally accepted that the product of the unloaded quality factor and resonant frequency is the universal parameter for comparison of dielectric resonators with different size.1,2 However, it is suggested in this study that this universal parameter should be modified due to the presence of the polarons. From the frequency dependence of the unloaded quality factor, it is possible to extract the factor determined only by the phonon scattering effects, and we denoted this parameter by Qs. It was found that the Qs parameter for ZrxSnzTiyO4 (ZST) and Ba(Zn1/3Ta2/3)O3 (BZT) ceramics showed constancy in the frequency range of 2–12 GHz, which supports the idea of polaron conduction loss contribution to the dielectric loss.


2010 ◽  
Vol 21 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Hassan Khalil ◽  
Stéphane Bila ◽  
Michel Aubourg ◽  
Dominique Baillargeat ◽  
Serge Verdeyme ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Biyun Ma ◽  
Anne Chousseaud ◽  
Serge Toutain

We propose a new method to design miniaturized compact antennas, in which it is possible to control conjointly the radiation efficiency and the bandwidth selectivity of the antenna. And this method has been validated by the realization of prototypes based on planar resonators. The geometry of these resonators has been chosen because their unloaded quality factor can be controlled and is mainly dependent on radiation loss. In the first time, a filter with a significant potential to radiation has been realized by choosing suitable miniaturized resonators. An antenna, based on the same structure, in which the output of the filter was removed (load by air resistance) can be obtained. Modification of the quality factor of each resonator is necessary to take into account the change of the load value from the previous filter to the final structure. The position and the quality factor of the resonators are determined by a filter design concept to obtain a specific frequency response in which each resonator is a basic radiation element. Load of the antenna is ultimately a distributed load constituted by the parallel contributions of each resonators to radiation loss. In other words such an antenna can also be called radiating filter.


2022 ◽  
Vol 12 (2) ◽  
pp. 546
Author(s):  
Peng Sha ◽  
Weimin Pan ◽  
Jiyuan Zhai ◽  
Zhenghui Mi ◽  
Song Jin ◽  
...  

Medium-temperature (mid-T) furnace baking was conducted at 650 MHz superconducting radio-frequency (SRF) cavity for circular electron positron collider (CEPC), which enhanced the cavity unloaded quality factor (Q0) significantly. In the vertical test (2.0 K), Q0 of 650 MHz cavity reached 6.4 × 1010 at 30 MV/m, which is remarkably high at this unexplored frequency. Additionally, the cavity quenched at 31.2 MV/m finally. There was no anti-Q-slope behavior after mid-T furnace baking, which is characteristic of 1.3 GHz cavities. The microwave surface resistance (RS) was also studied, which indicated both very low Bardeen–Cooper–Schrieffer (BCS) and residual resistance. The recipe of cavity process in this paper is simplified and easy to duplicate, which may benefit the SRF community.


Sign in / Sign up

Export Citation Format

Share Document