Use of PMU-Based Software Platform to Provide Real-Time Situational Awareness for Bronzeville Community Microgrid

Author(s):  
Niroj Gurung ◽  
Sri Raghavan Raghav Kothandaraman ◽  
Liuxi Calvin Zhang ◽  
Heng Kevin Chen ◽  
Farnoosh Rahmatian ◽  
...  
Author(s):  
Bhargav Appasani ◽  
Amitkumar Vidyakant Jha ◽  
Sunil Kumar Mishra ◽  
Abu Nasar Ghazali

AbstractReal time monitoring and control of a modern power system has achieved significant development since the incorporation of the phasor measurement unit (PMU). Due to the time-synchronized capabilities, PMU has increased the situational awareness (SA) in a wide area measurement system (WAMS). Operator SA depends on the data pertaining to the real-time health of the grid. This is measured by PMUs and is accessible for data analytics at the data monitoring station referred to as the phasor data concentrator (PDC). Availability of the communication system and communication delay are two of the decisive factors governing the operator SA. This paper presents a pragmatic metric to assess the operator SA and ensure optimal locations for the placement of PMUs, PDC, and the underlying communication infrastructure to increase the efficacy of operator SA. The uses of digital elevation model (DEM) data of the surface topography to determine the optimal locations for the placement of the PMU, and the microwave technology for communicating synchrophasor data is another important contribution carried out in this paper. The practical power grid system of Bihar in India is considered as a case study, and extensive simulation results and analysis are presented for validating the proposed methodology.


2021 ◽  
Vol 11 (16) ◽  
pp. 7197
Author(s):  
Yourui Tong ◽  
Bochen Jia ◽  
Shan Bao

Warning pedestrians of oncoming vehicles is critical to improving pedestrian safety. Due to the limitations of a pedestrian’s carrying capacity, it is crucial to find an effective solution to provide warnings to pedestrians in real-time. Limited numbers of studies focused on warning pedestrians of oncoming vehicles. Few studies focused on developing visual warning systems for pedestrians through wearable devices. In this study, various real-time projection algorithms were developed to provide accurate warning information in a timely way. A pilot study was completed to test the algorithm and the user interface design. The projection algorithms can update the warning information and correctly fit it into an easy-to-understand interface. By using this system, timely warning information can be sent to those pedestrians who have lower situational awareness or obstructed view to protect them from potential collisions. It can work well when the sightline is blocked by obstructions.


2021 ◽  
pp. 016555152110077
Author(s):  
Sulong Zhou ◽  
Pengyu Kan ◽  
Qunying Huang ◽  
Janet Silbernagel

Natural disasters cause significant damage, casualties and economical losses. Twitter has been used to support prompt disaster response and management because people tend to communicate and spread information on public social media platforms during disaster events. To retrieve real-time situational awareness (SA) information from tweets, the most effective way to mine text is using natural language processing (NLP). Among the advanced NLP models, the supervised approach can classify tweets into different categories to gain insight and leverage useful SA information from social media data. However, high-performing supervised models require domain knowledge to specify categories and involve costly labelling tasks. This research proposes a guided latent Dirichlet allocation (LDA) workflow to investigate temporal latent topics from tweets during a recent disaster event, the 2020 Hurricane Laura. With integration of prior knowledge, a coherence model, LDA topics visualisation and validation from official reports, our guided approach reveals that most tweets contain several latent topics during the 10-day period of Hurricane Laura. This result indicates that state-of-the-art supervised models have not fully utilised tweet information because they only assign each tweet a single label. In contrast, our model can not only identify emerging topics during different disaster events but also provides multilabel references to the classification schema. In addition, our results can help to quickly identify and extract SA information to responders, stakeholders and the general public so that they can adopt timely responsive strategies and wisely allocate resource during Hurricane events.


2017 ◽  
Vol 24 (2) ◽  
pp. 17-26
Author(s):  
Mustafa Yagimli ◽  
Huseyin Kursat Tezer

Abstract The real-time voice command recognition system used for this study, aims to increase the situational awareness, therefore the safety of navigation, related especially to the close manoeuvres of warships, and the courses of commercial vessels in narrow waters. The developed system, the safety of navigation that has become especially important in precision manoeuvres, has become controllable with voice command recognition-based software. The system was observed to work with 90.6% accuracy using Mel Frequency Cepstral Coefficients (MFCC) and Dynamic Time Warping (DTW) parameters and with 85.5% accuracy using Linear Predictive Coding (LPC) and DTW parameters.


2021 ◽  
Author(s):  
Kriti Singh ◽  
Sai Yalamarty ◽  
Curtis Cheatham ◽  
Khoa Tran ◽  
Greg McDonald

Abstract This paper is a follow up to the URTeC (2019-343) publication where the training of a Machine Learning (ML) model to predict rate of penetration (ROP) is described. The ML model gathers recent drilling parameters and approximates drilling conditions downhole to predict ROP. In real time, the model is run through an optimization sweep by adjusting parameters which can be controlled by the driller. The optimal drilling parameters and modeled ROP are then displayed for the driller to utilize. The ML model was successfully deployed and tested in real time in collaboration with leading shale operators in the Permian Basin. The testing phase was split in two parts, preliminary field tests and trials of the end-product. The key learnings from preliminary field tests were used to develop an integrated driller's dashboard with optimal drilling parameters recommendations and situational awareness tools for high dysfunction and procedural compliance which was used for designed trials. The results of field trials are discussed where subject well ROP was improved between 19-33% when comparing against observation/control footage. The overall ROP on subject wells was also compared against offset wells with similar target formations, BHAs, and wellbore trajectories. In those comparisons against qualified offsets, ROP was improved by as little as 5% and as much as 33%. In addition to comparing ROP performance, results from post-run data analysis are also presented. Detailed drilling data analytics were performed to check if using the recommendations during the trial caused any detrimental effects such as divergence in directional trends or high lateral or axial vibrations. The results from this analysis indicate that the measured downhole axial and lateral vibrations were in the safe zone. Also, no significant deviations in rotary trends were observed.


Author(s):  
Tom Fairfax ◽  
Christopher Laing ◽  
Paul Vickers

This chapter treats computer networks as a cyber warfighting domain in which the maintenance of situational awareness is impaired by increasing traffic volumes and the lack of immediate sensory perception. Sonification (the use of non-speech audio for communicating information) is proposed as a viable means of monitoring a network in real time and a research agenda employing the sonification of a network's self-organized criticality within a context-aware affective computing scenario is given. The chapter views a computer network as a cyber battlespace with a particular operations spectrum and dynamics. Increasing network traffic volumes are interfering with the ability to present real-time intelligence about a network and so suggestions are made for how the context of a network might be used to help construct intelligent information infrastructures. Such a system would use affective computing principles to sonify emergent properties (such as self-organized criticality) of network traffic and behaviour to provide effective real-time situational awareness.


2019 ◽  
Vol 184 (Supplement_1) ◽  
pp. 114-120 ◽  
Author(s):  
Merritt Schreiber ◽  
David S Cates ◽  
Stephen Formanski ◽  
Michael King

Abstract There is increasing knowledge that health care workers (HCWs) can experience a variety of emotional impacts when responding to disasters and terrorism events. The Anticipate, Plan and Deter (APD) Responder Risk and Resilience Model was developed to provide a new, evidence-informed method for understanding and managing psychological impacts among HCWs. APD includes pre-deployment development of an individualized resilience plan and an in-theater, real-time self-triage system, which together allow HCWs to assess and manage the full range of psychological risk and resilience for themselves and their families. The inclusion of objective mental health risk factors to prompt activation of a coping plan, in connection with unit leadership real-time situational awareness, enables the first known evidence-driven “targeted action” plan to address responder risk early before Post Traumatic Stress Disorder and impairment become established. This paper describes pilot work using the self-triage system component in Alameda County’s Urban Shield and the Philippines’ Typhoon Haiyan, and then reports a case example of the full APD model implementation in West Africa’s Ebola epidemic.


Sign in / Sign up

Export Citation Format

Share Document