Modified Damage Equalization Method for Lifetime Estimation of Dielectrics

2021 ◽  
Vol 28 (4) ◽  
pp. 1118-1126
Author(s):  
Birender Singh Thind ◽  
G. N. Reddy ◽  
A. J. Thomas ◽  
C. C. Reddy
2021 ◽  
Vol 14 (2) ◽  
pp. 28-31
Author(s):  
René Knoblich ◽  
Jörg Beilharz ◽  
Clemens Gühmann
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 207
Author(s):  
Jianwen Cao ◽  
Bizhong Xia ◽  
Jie Zhou

The inconsistency in large-scale battery pack significantly degrades the performance of electric vehicles. In order to diminish the inconsistency, the study designs an active equalization method comprising of equalizer and equalization strategy for lithium-ion batteries. A bidirectional flyback transformer equalizer (BFTE) is designed and analyzed. The BFTE is controlled by a pulse width modulation (PWM) controller to output designated balancing currents. Under the purpose of shortening equalization time and reducing energy consumption during the equalization process, this paper proposes an equalization strategy based on variable step size generalized predictive control (VSSGPC). The VSSGPC is improved on the generalized predictive control (GPC) by introducing the Step Size Factor. The VSSGPC surmounts the local limitation of GPC by expanding the control and output horizons to the global equalization process without increasing computation owing to the Step Size Factor. The experiment results in static operating condition indicate that the equalization time and energy consumption are reduced by 8.3% and 16.5%, respectively. Further validation in CC-CV and EUDC operating conditions verifies the performance of the equalizer and rationality of the VSSGPC strategy.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 324
Author(s):  
Carmelo Barbagallo ◽  
Santi Agatino Rizzo ◽  
Giacomo Scelba ◽  
Giuseppe Scarcella ◽  
Mario Cacciato

This work presents a step-by-step procedure to estimate the lifetime of discrete SiC power MOSFETs equipping three-phase inverters of electric drives. The stress of each power device when it is subjected to thermal jumps from a few degrees up to about 80 °C was analyzed, starting from the computation of the average power losses and the commitment of the electric drive. A customizable mission profile was considered where, by accounting the working conditions of the drive, the corresponding average power losses and junction temperatures of the SiC MOSFETs composing the inverter can be computed. The tool exploits the Coffin–Manson theory, rainflow counting, and Miner’s rule for the lifetime estimation of the semiconductor power devices. Different operating scenarios were investigated, underlying their impact on the lifetime of SiC MOSFETs devices. The lifetime estimation procedure was realized with the main goal of keeping limited computational efforts, while providing an effective evaluation of the thermal effects. The method enables us to set up any generic mission profile from the electric drive model. This gives us the possibility to compare several operating scenario of the drive and predict the worse operating conditions for power devices. Finally, although the lifetime estimation tool was applied to SiC power MOSFET devices for a general-purpose application, it can be extended to any type of power switch technology.


Sign in / Sign up

Export Citation Format

Share Document