Architecture of a 3D-simulation environment for active vision systems and mobile robots

Author(s):  
A. Baudry ◽  
M. Bungenstock ◽  
B. Mertsching
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joan Carles Puchalt ◽  
Antonio-José Sánchez-Salmerón ◽  
Eugenio Ivorra ◽  
Silvia Llopis ◽  
Roberto Martínez ◽  
...  

AbstractTraditionally Caenorhabditis elegans lifespan assays are performed by manually inspecting nematodes with a dissection microscope, which involves daily counting of live/dead worms cultured in Petri plates for 21–25 days. This manual inspection requires the screening of hundreds of worms to ensure statistical robustness, and is therefore a time-consuming approach. In recent years, various automated artificial vision systems have been reported to increase the throughput, however they usually provide less accurate results than manual assays. The main problems identified when using these vision systems are the false positives and false negatives, which occur due to culture media changes, occluded zones, dirtiness or condensation of the Petri plates. In this work, we developed and described a new C. elegans monitoring machine, SiViS, which consists of a flexible and compact platform design to analyse C. elegans cultures using the standard Petri plates seeded with E. coli. Our system uses an active vision illumination technique and different image-processing pipelines for motion detection, both previously reported, providing a fully automated image processing pipeline. In addition, this study validated both these methods and the feasibility of the SiViS machine for lifespan experiments by comparing them with manual lifespan assays. Results demonstrated that the automated system yields consistent replicates (p-value log rank test 0.699), and there are no significant differences between automated system assays and traditionally manual assays (p-value 0.637). Finally, although we have focused on the use of SiViS in longevity assays, the system configuration is flexible and can, thus, be adapted to other C. elegans studies such as toxicity, mobility and behaviour.


10.5772/50920 ◽  
2012 ◽  
Vol 9 (1) ◽  
pp. 25 ◽  
Author(s):  
Kolja Kühnlenz ◽  
Martin Buss

Multi-focal vision systems comprise cameras with various fields of view and measurement accuracies. This article presents a multi-focal approach to localization and mapping of mobile robots with active vision. An implementation of the novel concept is done considering a humanoid robot navigation scenario where the robot is visually guided through a structured environment with several landmarks. Various embodiments of multi-focal vision systems are investigated and the impact on navigation performance is evaluated in comparison to a conventional mono-focal stereo set-up. The comparative studies clearly show the benefits of multi-focal vision for mobile robot navigation: flexibility to assign the different available sensors optimally in each situation, enhancement of the visible field, higher localization accuracy, and, thus, better task performance, i.e. path following behavior of the mobile robot. It is shown that multi-focal vision may strongly improve navigation performance.


2019 ◽  
pp. 298-313
Author(s):  
Jose Maria Cela-Ranilla ◽  
Luis Marqués Molías ◽  
Mercè Gisbert Cervera

This study analyzes the relationship between the use of learning patterns as a grouping criterion to develop learning activities in the 3D simulation environment at University. Participants included 72 Spanish students from the Education and Marketing disciplines. Descriptive statistics and non-parametric tests were conducted. The process was analyzed by means of teamwork measurements and the product was analyzed by assessing the final group performance. Results showed that learning patterns can be an effective criterion for forming work groups, especially when the students do not know each other.


Author(s):  
Michael Garrett ◽  
Mark McMahon

Problem-based learning is an instructional strategy that emphasises the accumulation and development of knowledge via an active and experiential based approach to solving problems. This pedagogical framework can be instantiated using gaming technology to provide learners with the ability to control their learning experience within a dynamic, responsive, and visually rich three-dimensional virtual environment. In this regard, a conceptual framework referred to as the Simulation, User, and Problem-based Learning (SUPL) approach has been developed in order to inform the design of 3D simulation environments based on gaming technology within a problem-based learning pedagogy. The SUPL approach identifies a series of design factors relative to the user, the problem-solving task, and the 3D simulation environment that guide the learning process and facilitate the transfer of knowledge. This paper will present a simulation environment design according to this conceptual framework for a problem-solving task within the context of an underground mine emergency evacuation. The problem-solving task will be designed to satisfy learning objectives that relate to the development of knowledge and skills for emergency evacuation of the Dominion Mining’s Challenger mining operation located in South Australia.


2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092167
Author(s):  
Hao Quan ◽  
Yansheng Li ◽  
Yi Zhang

At present, the application of mobile robots is more and more extensive, and the movement of mobile robots cannot be separated from effective navigation, especially path exploration. Aiming at navigation problems, this article proposes a method based on deep reinforcement learning and recurrent neural network, which combines double net and recurrent neural network modules with reinforcement learning ideas. At the same time, this article designed the corresponding parameter function to improve the performance of the model. In order to test the effectiveness of this method, based on the grid map model, this paper trains in a two-dimensional simulation environment, a three-dimensional TurtleBot simulation environment, and a physical robot environment, and obtains relevant data for peer-to-peer analysis. The experimental results show that the proposed algorithm has a good improvement in path finding efficiency and path length.


Sign in / Sign up

Export Citation Format

Share Document