Evaluating the performance of close-range 3D active vision systems for industrial design applications

Author(s):  
J.-Angelo Beraldin ◽  
Marco Gaiani
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joan Carles Puchalt ◽  
Antonio-José Sánchez-Salmerón ◽  
Eugenio Ivorra ◽  
Silvia Llopis ◽  
Roberto Martínez ◽  
...  

AbstractTraditionally Caenorhabditis elegans lifespan assays are performed by manually inspecting nematodes with a dissection microscope, which involves daily counting of live/dead worms cultured in Petri plates for 21–25 days. This manual inspection requires the screening of hundreds of worms to ensure statistical robustness, and is therefore a time-consuming approach. In recent years, various automated artificial vision systems have been reported to increase the throughput, however they usually provide less accurate results than manual assays. The main problems identified when using these vision systems are the false positives and false negatives, which occur due to culture media changes, occluded zones, dirtiness or condensation of the Petri plates. In this work, we developed and described a new C. elegans monitoring machine, SiViS, which consists of a flexible and compact platform design to analyse C. elegans cultures using the standard Petri plates seeded with E. coli. Our system uses an active vision illumination technique and different image-processing pipelines for motion detection, both previously reported, providing a fully automated image processing pipeline. In addition, this study validated both these methods and the feasibility of the SiViS machine for lifespan experiments by comparing them with manual lifespan assays. Results demonstrated that the automated system yields consistent replicates (p-value log rank test 0.699), and there are no significant differences between automated system assays and traditionally manual assays (p-value 0.637). Finally, although we have focused on the use of SiViS in longevity assays, the system configuration is flexible and can, thus, be adapted to other C. elegans studies such as toxicity, mobility and behaviour.


10.5772/50920 ◽  
2012 ◽  
Vol 9 (1) ◽  
pp. 25 ◽  
Author(s):  
Kolja Kühnlenz ◽  
Martin Buss

Multi-focal vision systems comprise cameras with various fields of view and measurement accuracies. This article presents a multi-focal approach to localization and mapping of mobile robots with active vision. An implementation of the novel concept is done considering a humanoid robot navigation scenario where the robot is visually guided through a structured environment with several landmarks. Various embodiments of multi-focal vision systems are investigated and the impact on navigation performance is evaluated in comparison to a conventional mono-focal stereo set-up. The comparative studies clearly show the benefits of multi-focal vision for mobile robot navigation: flexibility to assign the different available sensors optimally in each situation, enhancement of the visible field, higher localization accuracy, and, thus, better task performance, i.e. path following behavior of the mobile robot. It is shown that multi-focal vision may strongly improve navigation performance.


2000 ◽  
Vol 124 (1) ◽  
pp. 126-134 ◽  
Author(s):  
Tzung-Sz Shen ◽  
Chia-Hsiang Menq

3-D active vision systems that project artificial structured light for coordinate measurements have been adopted in many industrial applications. With advances of electronic projection display technology, the digital projector is becoming an important component of various 3-D active vision systems. However, current projector models or structured light calibration techniques for 3-D active vision systems are limited to stripe-type structured light and the majority of them do not consider projector lens distortion. In order to overcome these limitations, a digital projector calibration method is developed to calibrate light beams projected from all pixel elements of a digital projector. Since the digital projector is fully programmable, various structured light patterns can be projected for coordinate acquisition, whose models can be obtained by interpolating parameters of light beams that synthesize the structured light patterns. With proper interpolation functions, experimental results indicate that the projector lens distortion can be successfully compensated and measurement errors are significantly reduced. When the digital projector is moved, a simple rigid body transformation calibration method is developed to rapidly obtain the transformation without re-calibrating the projector. The precision of the 3-D active vision system using the proposed digital projector calibration method and rigid body transformation calibration technique is experimentally evaluated.


Sign in / Sign up

Export Citation Format

Share Document