scholarly journals Internal Model Control for a Bearingless Permanent Magnet Synchronous Motor Based on Inverse System Method

2016 ◽  
Vol 31 (4) ◽  
pp. 1539-1548 ◽  
Author(s):  
Xiaodong Sun ◽  
Zhou Shi ◽  
Long Chen ◽  
Zebin Yang
Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 172 ◽  
Author(s):  
Zhihong Wu ◽  
Weisong Gu ◽  
Yuan Zhu ◽  
Ke Lu

Via the vector space decomposition (VSD) transformation, the currents in an asymmetric six-phase permanent magnet synchronous motor (ASP_PMSM) can be decoupled into three orthogonal subspaces. Control of α–β currents in α–β subspace is important for torque regulation, while control of x-y currents in x-y subspace can suppress the harmonics due to the dead time of converters and other nonlinear factors. The zero-sequence components in O1-O2 subspace are 0 due to isolated neutral points. In α–β subspace, a state observer is constructed by introducing the error variable between the real current and the internal model current based on the internal model control method, which can improve the current control performance compared to the traditional internal model control method. In x–y subspace, in order to suppress the current harmonics, an adaptive-linear-neuron (ADALINE)-based control algorithm is employed to generate the compensation voltage, which is self-tuned by minimizing the estimated current distortion through the least mean square (LMS) algorithm. The modulation technique to implement the four-dimensional current control based on the three-phase SVPWM is given. The experimental results validate the robustness and effectiveness of the proposed control method.


2014 ◽  
Vol 1037 ◽  
pp. 258-263
Author(s):  
Zheng Qi Wang ◽  
Xue Liang Huang

The bearingless induction motor is a nonlinear, multi-variable and strongly coupling system. In this paper, a new nonlinear internal model control (IMC) strategy based on inverse system theory is proposed to realize the decoupling control for the bearingless induction motor. The mathematical model of the motor is built and then the inverse system method is applied to decouple the original nonlinear system. Finally the internal model control method is introduced to ensure the robustness of the closed-loop system. The effectiveness of the proposed strategy are demonstrated by simulation.


Sign in / Sign up

Export Citation Format

Share Document