Interesting Odd–Even Effect, Ohmic Contact, Negative Differential Resistance, and Current Stabilizer Behavior in All-Carbon Graphyne/Carbon-Chain Junctions

2020 ◽  
Vol 67 (6) ◽  
pp. 2529-2535
Author(s):  
Jiangni Yun ◽  
Huan An ◽  
Renjing Huang ◽  
Mingzhi Guo ◽  
Yanni Zhang ◽  
...  
2014 ◽  
Vol 1070-1072 ◽  
pp. 479-482
Author(s):  
Li Hua Wang ◽  
Heng Fang Meng ◽  
Bing Jun Ding ◽  
Yong Guo

We investigate electronic transport properties of molecular device models constructed by a dipyrimidinyl–dimethyl molecule embedding in a carbon chain, which are then coupled to the gold electrodes through thiol or isocyanide group. Using the density functional theory combined with the nonequilibrium Green’s function method, negative differential resistance behaviors are observed in such molecular junctions. Most importantly, system with the isocyanide group can achieve a larger negative differential resistance at lower bias voltage (0.1V).


2017 ◽  
Vol 727 ◽  
pp. 427-431 ◽  
Author(s):  
Zhao Hui Gong ◽  
Tong Sheng Xia ◽  
Ya Xin Wang

In this work, we report the electronic transport properties of an atomic carbon chain sandwiched between two ferromagnetic zigzag graphene nanoribbon electrodes with symmetrical nitrogen-vacancy defects using the density functional theory combining with the non-equilibrium Green’s function method. Our results show that a perfect spin filter is observed with almost 100% spin polarization. Moreover, we also see the negative differential resistance effect from the spin-up current under a low positive voltage bias. These results may promise potential applications in spintronic devices with multi-function in the future.


2020 ◽  
Author(s):  
SMITA GAJANAN NAIK ◽  
Mohammad Hussain Kasim Rabinal

Electrical memory switching effect has received a great interest to develop emerging memory technology such as memristors. The high density, fast response, multi-bit storage and low power consumption are their...


2002 ◽  
Vol 25 (3) ◽  
pp. 233-237
Author(s):  
K. F. Yarn

First observation of switching behavior is reported in GaAs metal-insulator-p-n+structure, where the thin insulator is grown at low temperature by a liquid phase chemical-enhanced oxide (LPECO) with a thickness of 100 Å. A significant S-shaped negative differential resistance (NDR) is shown to occur that originates from the regenerative feedback in a tunnel metal/insulator/semiconductor (MIS) interface andp-n+junction. The influence of epitaxial doping concentration on the switching and holding voltages is investigated. The switching voltages are found to be decreased when increasing the epitaxial doping concentration, while the holding voltages are almost kept constant. A high turn-off/turn-on resistance ratio up to105has been obtained.


Sign in / Sign up

Export Citation Format

Share Document