Fault injection boundary scan design for verification of fault tolerant systems

Author(s):  
S. Chau
Author(s):  
Peter Marwedel

AbstractUnfortunately, we cannot rely on designed and possibly already manufactured systems to operate as expected. These systems may have become defective during their use, or their function may have been compromised during the fabrication or their design. The purpose of testing is to verify whether or not an existing embedded/cyber-physical system can be operated as expected. In this chapter, we will present fundamental terms and techniques for testing. There will be a brief introduction to the aims of test pattern generation and their application. We will be introducing terms such as fault model, fault coverage, fault simulation, and fault injection. Also, we will be presenting techniques which improve testability, including the generation of pseudo-random patterns, and signature analysis. It would be beneficial to consider testability issues already during design. In case of fault-tolerant systems, resilience must be verified.


1993 ◽  
Vol 42 (8) ◽  
pp. 913-923 ◽  
Author(s):  
J. Arlat ◽  
A. Costes ◽  
Y. Crouzet ◽  
J.C. Laprie ◽  
D. Powell

Author(s):  
T. Kiyan ◽  
C. Boit ◽  
C. Brillert

Abstract In this paper, a methodology based upon laser stimulation and a comparison of continuous wave and pulsed laser operation will be presented that localizes the fault relevant sites in a fully functional scan chain cell. The technique uses a laser incident from the backside to inject soft faults into internal nodes of a master-slave scan flip-flop in consequence of localized photocurrent. Depending on the illuminated type of the transistors (n- or p-type), injection of a logic ‘0’ or ‘1’ into the master or the slave stage of a flip-flop takes place. The laser pulse is externally triggered and can easily be shifted to various time slots in reference to clock and scan pattern. This feature of the laser diode allows triggering the laser pulse on the rising or the falling edge of the clock. Therefore, it is possible to choose the stage of the flip-flop in which the fault injection should occur. It is also demonstrated that the technique is able to identify the most sensitive signal condition for fault injection with a better time resolution than the pulse width of the laser, a significant improvement for failure analysis of integrated circuits.


2003 ◽  
Vol 18 (2) ◽  
pp. 190-200 ◽  
Author(s):  
JianHui Jiang ◽  
YingHua Min ◽  
ChengLian Peng

2008 ◽  
Vol 28 (2) ◽  
pp. 355-375 ◽  
Author(s):  
Márcio das Chagas Moura ◽  
Enrique López Droguett

In this work it is proposed a model for the assessment of availability measure of fault tolerant systems based on the integration of continuous time semi-Markov processes and Bayesian belief networks. This integration results in a hybrid stochastic model that is able to represent the dynamic characteristics of a system as well as to deal with cause-effect relationships among external factors such as environmental and operational conditions. The hybrid model also allows for uncertainty propagation on the system availability. It is also proposed a numerical procedure for the solution of the state probability equations of semi-Markov processes described in terms of transition rates. The numerical procedure is based on the application of Laplace transforms that are inverted by the Gauss quadrature method known as Gauss Legendre. The hybrid model and numerical procedure are illustrated by means of an example of application in the context of fault tolerant systems.


Sign in / Sign up

Export Citation Format

Share Document