Simulated Multispectral Imagery for Tree Species Classification Using Support Vector Machines

2010 ◽  
Vol 48 (3) ◽  
pp. 1355-1364 ◽  
Author(s):  
V. Heikkinen ◽  
T. Tokola ◽  
J. Parkkinen ◽  
I. Korpela ◽  
T. Jaaskelainen
2019 ◽  
Vol 11 (24) ◽  
pp. 2948 ◽  
Author(s):  
Hoang Minh Nguyen ◽  
Begüm Demir ◽  
Michele Dalponte

Tree species classification at individual tree crowns (ITCs) level, using remote-sensing data, requires the availability of a sufficient number of reliable reference samples (i.e., training samples) to be used in the learning phase of the classifier. The classification performance of the tree species is mainly affected by two main issues: (i) an imbalanced distribution of the tree species classes, and (ii) the presence of unreliable samples due to field collection errors, coordinate misalignments, and ITCs delineation errors. To address these problems, in this paper, we present a weighted Support Vector Machine (wSVM)-based approach for the detection of tree species at ITC level. The proposed approach initially extracts (i) different weights associated to different classes of tree species, to mitigate the effect of the imbalanced distribution of the classes; and (ii) different weights associated to different training samples according to their importance for the classification problem, to reduce the effect of unreliable samples. Then, in order to exploit different weights in the learning phase of the classifier a wSVM algorithm is used. The features to characterize the tree species at ITC level are extracted from both the elevation and intensity of airborne light detection and ranging (LiDAR) data. Experimental results obtained on two study areas located in the Italian Alps show the effectiveness of the proposed approach.


2020 ◽  
Vol 12 (23) ◽  
pp. 3926
Author(s):  
Martina Deur ◽  
Mateo Gašparović ◽  
Ivan Balenović

Spatially explicit information on tree species composition is important for both the forest management and conservation sectors. In combination with machine learning algorithms, very high-resolution satellite imagery may provide an effective solution to reduce the need for labor-intensive and time-consuming field-based surveys. In this study, we evaluated the possibility of using multispectral WorldView-3 (WV-3) satellite imagery for the classification of three main tree species (Quercus robur L., Carpinus betulus L., and Alnus glutinosa (L.) Geartn.) in a lowland, mixed deciduous forest in central Croatia. The pixel-based supervised classification was performed using two machine learning algorithms: random forest (RF) and support vector machine (SVM). Additionally, the contribution of gray level cooccurrence matrix (GLCM) texture features from WV-3 imagery in tree species classification was evaluated. Principal component analysis confirmed GLCM variance to be the most significant texture feature. Of the 373 visually interpreted reference polygons, 237 were used as training polygons and 136 were used as validation polygons. The validation results show relatively high overall accuracy (85%) for tree species classification based solely on WV-3 spectral characteristics and the RF classification approach. As expected, an improvement in classification accuracy was achieved by a combination of spectral and textural features. With the additional use of GLCM variance, the overall accuracy improved by 10% and 7% for RF and SVM classification approaches, respectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Guang Yang ◽  
Yaolong Zhao ◽  
Baoxin Li ◽  
Yuntao Ma ◽  
Ruren Li ◽  
...  

Explicit information of tree species composition provides valuable materials for the management of forests and urban greenness. In recent years, scholars have employed multiple features in tree species classification, so as to identify them from different perspectives. Most studies use different features to classify the target tree species in a specific growth environment and evaluate the classification results. However, the data matching problems have not been discussed; besides, the contributions of different features and the performance of different classifiers have not been systematically compared. Remote sensing technology of the integrated sensors helps to realize the purpose with high time efficiency and low cost. Benefiting from an integrated system which simultaneously acquired the hyperspectral images, LiDAR waveform, and point clouds, this study made a systematic research on different features and classifiers in pixel-wised tree species classification. We extracted the crown height model (CHM) from the airborne LiDAR device and multiple features from the hyperspectral images, including Gabor textural features, gray-level co-occurrence matrix (GLCM) textural features, and vegetation indices. Different experimental schemes were tested at two study areas with different numbers and configurations of tree species. The experimental results demonstrated the effectiveness of Gabor textural features in specific tree species classification in both homogeneous and heterogeneous growing environments. The GLCM textural features did not improve the classification accuracy of tree species when being combined with spectral features. The CHM feature made more contributions to discriminating tree species than vegetation indices. Different classifiers exhibited similar performances, and support vector machine (SVM) produced the highest overall accuracy among all the classifiers.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6101 ◽  
Author(s):  
G Rex Sumsion ◽  
Michael S. Bradshaw ◽  
Kimball T. Hill ◽  
Lucas D.G. Pinto ◽  
Stephen R. Piccolo

To accelerate scientific progress on remote tree classification—as well as biodiversity and ecology sampling—The National Institute of Science and Technology created a community-based competition where scientists were invited to contribute informatics methods for classifying tree species and genus using crown-level images of trees. We classified tree species and genus at the pixel level using hyperspectral and LiDAR observations. We compared three algorithms that have been implemented extensively across a broad range of research applications: support vector machines, random forests, and multilayer perceptron. At the pixel level, the multilayer perceptron algorithm classified species or genus with high accuracy (92.7% and 95.9%, respectively) on the training data and performed better than the other two algorithms (85.8–93.5%). This indicates promise for the use of the multilayer perceptron (MLP) algorithm for tree-species classification based on hyperspectral and LiDAR observations and coincides with a growing body of research in which neural network-based algorithms outperform other types of classification algorithm for machine vision. To aggregate patterns across the images, we used an ensemble approach that averages the pixel-level outputs of the MLP algorithm to classify species at the crown level. The average accuracy of these classifications on the test set was 68.8% for the nine species.


2021 ◽  
Vol 13 (2) ◽  
pp. 216
Author(s):  
Yutang Wang ◽  
Jia Wang ◽  
Shuping Chang ◽  
Lu Sun ◽  
Likun An ◽  
...  

As an important component of the urban ecosystem, street trees have made an outstanding contribution to alleviating urban environmental pollution. Accurately extracting tree characteristics and species information can facilitate the monitoring and management of street trees, as well as aiding landscaping and studies of urban ecology. In this study, we selected the suburban areas of Beijing and Zhangjiakou and investigated six representative street tree species using unmanned aerial vehicle (UAV) tilt photogrammetry. We extracted five tree attributes and four combined attribute parameters and used four types of commonly-used machine learning classification algorithms as classifiers for tree species classification. The results show that random forest (RF), support vector machine (SVM), and back propagation (BP) neural network provide better classification results when using combined parameters for tree species classification, compared with those using individual tree attributes alone; however, the K-nearest neighbor (KNN) algorithm produced the opposite results. The best combination for classification is the BP neural network using combined attributes, with a classification precision of 89.1% and F-measure of 0.872, and we conclude that this approach best meets the requirements of street tree surveys. The results also demonstrate that optical UAV tilt photogrammetry combined with a machine learning classification algorithm is a low-cost, high-efficiency, and high-precision method for tree species classification.


2019 ◽  
Vol 11 (11) ◽  
pp. 1338 ◽  
Author(s):  
Camile Sothe ◽  
Michele Dalponte ◽  
Cláudia Maria de Almeida ◽  
Marcos Benedito Schimalski ◽  
Carla Luciane Lima ◽  
...  

The use of remote sensing data for tree species classification in tropical forests is still a challenging task, due to their high floristic and spectral diversity. In this sense, novel sensors on board of unmanned aerial vehicle (UAV) platforms are a rapidly evolving technology that provides new possibilities for tropical tree species mapping. Besides the acquisition of high spatial and spectral resolution images, UAV-hyperspectral cameras operating in frame format enable to produce 3D hyperspectral point clouds. This study investigated the use of UAV-acquired hyperspectral images and UAV-photogrammetric point cloud (PPC) for classification of 12 major tree species in a subtropical forest fragment in Southern Brazil. Different datasets containing hyperspectral visible/near-infrared (VNIR) bands, PPC features, canopy height model (CHM), and other features extracted from hyperspectral data (i.e., texture, vegetation indices-VIs, and minimum noise fraction-MNF) were tested using a support vector machine (SVM) classifier. The results showed that the use of VNIR hyperspectral bands alone reached an overall accuracy (OA) of 57% (Kappa index of 0.53). Adding PPC features to the VNIR hyperspectral bands increased the OA by 11%. The best result was achieved combining VNIR bands, PPC features, CHM, and VIs (OA of 72.4% and Kappa index of 0.70). When only the CHM was added to VNIR bands, the OA increased by 4.2%. Among the hyperspectral features, besides all the VNIR bands and the two VIs (NDVI and PSSR), the first four MNF features and the textural mean of 565 and 679 nm spectral bands were pointed out as more important to discriminate the tree species according to Jeffries–Matusita (JM) distance. The SVM method proved to be a good classifier for the tree species recognition task, even in the presence of a high number of classes and a small dataset.


2018 ◽  
Author(s):  
G Rex Sumsion ◽  
Michael S Bradshaw ◽  
Kimball T Hill ◽  
Lucas D G Pinto ◽  
Stephen R Piccolo ◽  
...  

To accelerate scientific progress on remote tree classification—as well as biodiversity and ecology sampling—The National Institute of Science and Technology created a community-based competition where scientists were invited to contribute informatics methods for classifying tree species and genus using crown-level images of trees. We predicted tree species and genus at the pixel level using hyperspectral and LIDAR observations. We compared three algorithms that have been implemented extensively across a broad range of research applications: support vector machines, random forests, and multilayer perceptron. At the pixel level, the multilayer perceptron algorithm predicted species or genus with high accuracy (92.7 and 95.9%, respectively) on the training data and performed better than the other algorithms (85.8-93.5%). This indicates promise for the use of the MLP algorithm for tree-species classification and coincides with a growing body of research in which neural network-based algorithms outperform other types of classification algorithms for machine vision. To aggregate patterns across the images, we used an ensemble approach that averages the pixel-level outputs of the MLP algorithm to predict species at the crown level. The accuracy of these predictions on the test set was 68.8% for species.


Sign in / Sign up

Export Citation Format

Share Document