scholarly journals Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images

2017 ◽  
Vol 50 (1) ◽  
pp. 144-154 ◽  
Author(s):  
Edwin Raczko ◽  
Bogdan Zagajewski
2021 ◽  
Vol 13 (2) ◽  
pp. 216
Author(s):  
Yutang Wang ◽  
Jia Wang ◽  
Shuping Chang ◽  
Lu Sun ◽  
Likun An ◽  
...  

As an important component of the urban ecosystem, street trees have made an outstanding contribution to alleviating urban environmental pollution. Accurately extracting tree characteristics and species information can facilitate the monitoring and management of street trees, as well as aiding landscaping and studies of urban ecology. In this study, we selected the suburban areas of Beijing and Zhangjiakou and investigated six representative street tree species using unmanned aerial vehicle (UAV) tilt photogrammetry. We extracted five tree attributes and four combined attribute parameters and used four types of commonly-used machine learning classification algorithms as classifiers for tree species classification. The results show that random forest (RF), support vector machine (SVM), and back propagation (BP) neural network provide better classification results when using combined parameters for tree species classification, compared with those using individual tree attributes alone; however, the K-nearest neighbor (KNN) algorithm produced the opposite results. The best combination for classification is the BP neural network using combined attributes, with a classification precision of 89.1% and F-measure of 0.872, and we conclude that this approach best meets the requirements of street tree surveys. The results also demonstrate that optical UAV tilt photogrammetry combined with a machine learning classification algorithm is a low-cost, high-efficiency, and high-precision method for tree species classification.


Author(s):  
C. Sothe ◽  
L. E. C. la Rosa ◽  
C. M. de Almeida ◽  
A. Gonsamo ◽  
M. B. Schimalski ◽  
...  

Abstract. The classification of tree species can significantly benefit from high spatial and spectral information acquired by unmanned aerial vehicles (UAVs) associated with advanced feature extraction and classification methods. Different from the traditional feature extraction methods, that highly depend on user’s knowledge, the convolutional neural network (CNN)-based method can automatically learn and extract the spatial-related features layer by layer. However, in order to capture significant features of the data, the CNN classifier requires a large number of training samples, which are hardly available when dealing with tree species in tropical forests. This study investigated the following topics concerning the classification of 14 tree species in a subtropical forest area of Southern Brazil: i) the performance of the CNN method associated with a previous step to increase and balance the sample set (data augmentation) for tree species classification as compared to the conventional machine learning methods support vector machine (SVM) and random forest (RF) using the original training data; ii) the performance of the SVM and RF classifiers when associated with a data augmentation step and spatial features extracted from a CNN. Results showed that the CNN classifier outperformed the conventional SVM and RF classifiers, reaching an overall accuracy (OA) of 84.37% and Kappa of 0.82. The SVM and RF had a poor accuracy with the original spectral bands (OA 62.67% and 59.24%) but presented an increase between 14% and 21% in OA when associated with a data augmentation and spatial features extracted from a CNN.


2019 ◽  
Vol 11 (24) ◽  
pp. 2948 ◽  
Author(s):  
Hoang Minh Nguyen ◽  
Begüm Demir ◽  
Michele Dalponte

Tree species classification at individual tree crowns (ITCs) level, using remote-sensing data, requires the availability of a sufficient number of reliable reference samples (i.e., training samples) to be used in the learning phase of the classifier. The classification performance of the tree species is mainly affected by two main issues: (i) an imbalanced distribution of the tree species classes, and (ii) the presence of unreliable samples due to field collection errors, coordinate misalignments, and ITCs delineation errors. To address these problems, in this paper, we present a weighted Support Vector Machine (wSVM)-based approach for the detection of tree species at ITC level. The proposed approach initially extracts (i) different weights associated to different classes of tree species, to mitigate the effect of the imbalanced distribution of the classes; and (ii) different weights associated to different training samples according to their importance for the classification problem, to reduce the effect of unreliable samples. Then, in order to exploit different weights in the learning phase of the classifier a wSVM algorithm is used. The features to characterize the tree species at ITC level are extracted from both the elevation and intensity of airborne light detection and ranging (LiDAR) data. Experimental results obtained on two study areas located in the Italian Alps show the effectiveness of the proposed approach.


2019 ◽  
Vol 11 (23) ◽  
pp. 2788 ◽  
Author(s):  
Uwe Knauer ◽  
Cornelius Styp von Rekowski ◽  
Marianne Stecklina ◽  
Tilman Krokotsch ◽  
Tuan Pham Minh ◽  
...  

In this paper, we evaluate different popular voting strategies for fusion of classifier results. A convolutional neural network (CNN) and different variants of random forest (RF) classifiers were trained to discriminate between 15 tree species based on airborne hyperspectral imaging data. The spectral data was preprocessed with a multi-class linear discriminant analysis (MCLDA) as a means to reduce dimensionality and to obtain spatial–spectral features. The best individual classifier was a CNN with a classification accuracy of 0.73 +/− 0.086. The classification performance increased to an accuracy of 0.78 +/− 0.053 by using precision weighted voting for a hybrid ensemble of the CNN and two RF classifiers. This voting strategy clearly outperformed majority voting (0.74), accuracy weighted voting (0.75), and presidential voting (0.75).


2021 ◽  
Vol 13 (16) ◽  
pp. 3203
Author(s):  
Won-Kyung Baek ◽  
Hyung-Sup Jung

It is well known that the polarization characteristics in X-band synthetic aperture radar (SAR) image analysis can provide us with additional information for marine target classification and detection. Normally, dual-and single-polarized SAR images are acquired by SAR satellites, and then we must determine how accurate the marine mapping performance from dual-polarized (pol) images is versus the marine mapping performance from the single-pol images in a given machine learning model. The purpose of this study is to compare the performance of single- and dual-pol SAR image classification achieved by the support vector machine (SVM), random forest (RF), and deep neural network (DNN) models. The test image is a TerraSAR-X dual-pol image acquired from the 2007 Kerch Strait oil spill event. For this, 824,026 pixels and 1,648,051 pixels were extracted from the image for the training and test, respectively, and sea, ship, oil, and land objects were classified from the image by using the three machine learning methods. The mean f1-scores of the SVM, RF, and DNN models resulting from the single-pol image were approximately 0.822, 0.882, and 0.889, respectively, and those from the dual-pol image were about 0.852, 0.908, and 0.898, respectively. The performance improvement achieved by dual-pol was about 3.6%, 2.9%, and 1% in SVM, RF, and DNN, respectively. The DNN model had the best performance (0.889) in the single-pol test while the RF model was best (0.908) in the dual-pol test. The performance improvement was approximately 2.1% and not noticeable. If the condition that dual-pol images have two-times lower spatial resolution versus single-pol images in the azimuth direction is considered, a small improvement may not be valuable. Therefore, the results show that the performance improvement by X-band dual-pol image may be not remarkable when classifying the sea, ships, oil spills, and sea and land surfaces.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257069
Author(s):  
Jae-Geum Shim ◽  
Kyoung-Ho Ryu ◽  
Sung Hyun Lee ◽  
Eun-Ah Cho ◽  
Sungho Lee ◽  
...  

Objective To construct a prediction model for optimal tracheal tube depth in pediatric patients using machine learning. Methods Pediatric patients aged <7 years who received post-operative ventilation after undergoing surgery between January 2015 and December 2018 were investigated in this retrospective study. The optimal location of the tracheal tube was defined as the median of the distance between the upper margin of the first thoracic(T1) vertebral body and the lower margin of the third thoracic(T3) vertebral body. We applied four machine learning models: random forest, elastic net, support vector machine, and artificial neural network and compared their prediction accuracy to three formula-based methods, which were based on age, height, and tracheal tube internal diameter(ID). Results For each method, the percentage with optimal tracheal tube depth predictions in the test set was calculated as follows: 79.0 (95% confidence interval [CI], 73.5 to 83.6) for random forest, 77.4 (95% CI, 71.8 to 82.2; P = 0.719) for elastic net, 77.0 (95% CI, 71.4 to 81.8; P = 0.486) for support vector machine, 76.6 (95% CI, 71.0 to 81.5; P = 1.0) for artificial neural network, 66.9 (95% CI, 60.9 to 72.5; P < 0.001) for the age-based formula, 58.5 (95% CI, 52.3 to 64.4; P< 0.001) for the tube ID-based formula, and 44.4 (95% CI, 38.3 to 50.6; P < 0.001) for the height-based formula. Conclusions In this study, the machine learning models predicted the optimal tracheal tube tip location for pediatric patients more accurately than the formula-based methods. Machine learning models using biometric variables may help clinicians make decisions regarding optimal tracheal tube depth in pediatric patients.


2020 ◽  
Vol 12 (23) ◽  
pp. 3926
Author(s):  
Martina Deur ◽  
Mateo Gašparović ◽  
Ivan Balenović

Spatially explicit information on tree species composition is important for both the forest management and conservation sectors. In combination with machine learning algorithms, very high-resolution satellite imagery may provide an effective solution to reduce the need for labor-intensive and time-consuming field-based surveys. In this study, we evaluated the possibility of using multispectral WorldView-3 (WV-3) satellite imagery for the classification of three main tree species (Quercus robur L., Carpinus betulus L., and Alnus glutinosa (L.) Geartn.) in a lowland, mixed deciduous forest in central Croatia. The pixel-based supervised classification was performed using two machine learning algorithms: random forest (RF) and support vector machine (SVM). Additionally, the contribution of gray level cooccurrence matrix (GLCM) texture features from WV-3 imagery in tree species classification was evaluated. Principal component analysis confirmed GLCM variance to be the most significant texture feature. Of the 373 visually interpreted reference polygons, 237 were used as training polygons and 136 were used as validation polygons. The validation results show relatively high overall accuracy (85%) for tree species classification based solely on WV-3 spectral characteristics and the RF classification approach. As expected, an improvement in classification accuracy was achieved by a combination of spectral and textural features. With the additional use of GLCM variance, the overall accuracy improved by 10% and 7% for RF and SVM classification approaches, respectively.


Sign in / Sign up

Export Citation Format

Share Document