Development of Low-Emission Bio-Fuel Boiler System With Plasma-Chemical Hybrid $\hbox{NO}_{\rm x}$ Reduction

2011 ◽  
Vol 47 (5) ◽  
pp. 2210-2217 ◽  
Author(s):  
Hidekatsu Fujishima ◽  
Yusuke Yoshioka ◽  
Tomoyuki Kuroki ◽  
Atsushi Tanaka ◽  
Keiichi Otsuka ◽  
...  
Keyword(s):  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Serhiy Serbin ◽  
Artem Kozlovskyi ◽  
Kateryna Burunsuz

Abstract The article describes the stability of gaseous fuel combustion in gas turbine low-emission combustion chambers with the plasma-chemical assistance. The mathematical model of unsteady processes in a low-emission combustion chamber with a plasma-chemical stabilizer that takes into consideration the impact of low-temperature plasma on aerodynamics flow in a combustion chamber and the characteristics of heat release is developed. A methodology of a numerical experiment concerning the stability of gaseous fuel combustion in a combustion chamber with plasma assistance using computational fluid dynamics, which enhances the efficiency of designing and adjustment, is proposed. Practical recommendations for improvement of stability of a gas turbine combustion chamber with partially premixed lean fuel–air mixtures, working on gaseous fuels, are developed. They allow to reduce pressure fluctuations inside the flame tube by 10–35%, to decrease spectral power of static pressure in the flame tube in 1.5–2.0 times, to reduce nitrogen oxide emission up to 33.6 ppm in the exit section while retaining a carbon monoxide emission level, that corresponds modern international ecological standards.


Author(s):  
Hidekatsu Fujishima ◽  
Yusuke Yoshioka ◽  
Tomoyuki Kuroki ◽  
Atsushi Tanaka ◽  
Keiichi Otsuka ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Serhiy Serbin ◽  
Artem Kozlovskyi ◽  
Kateryna Burunsuz

Abstract The article describes the stability of gaseous fuel combustion in gas turbine low-emission combustion chambers with the plasma-chemical assistance. The mathematical model of unsteady processes in a low-emission combustion chamber with a plasma-chemical stabilizer that takes into consideration the impact of low-temperature plasma on aerodynamics flow in a combustion chamber and the characteristics of heat release is developed. A methodology of a numerical experiment concerning the stability of gaseous fuel combustion in a combustion chamber with plasma assistance using computational fluid dynamics, which enhances the efficiency of designing and adjustment, is proposed. Practical recommendations for improvement of stability of a gas turbine combustion chamber with partially premixed lean fuel–air mixtures, working on gaseous fuels, are developed. They allow to reduce pressure fluctuations inside the flame tube by 10–35%, to decrease spectral power of static pressure in the flame tube in 1.5–2.0 times, to reduce nitrogen oxide emission up to 33.6 ppm in the exit section while retaining a carbon monoxide emission level, that corresponds modern international ecological standards.


2019 ◽  
Vol 13 (3) ◽  
pp. 5278-5293
Author(s):  
Vipul Patel ◽  
Rupesh Shah

The present research aims to analyse diffusion flame in a tube type burner with Liquefied petroleum gas (LPG) as a fuel. An experimental investigation is performed to study flame appearance, flame stability, Soot free length fraction (SFLF) and CO emission of LPG diffusion flame. Effects of varying air and fuel velocities are analysed to understand the physical process involved in combustion. SFLF is measured to estimate the reduction of soot. Stability limits of the diffusion flame are characterized by the blowoff velocity. Emission characteristic in terms of CO level is measured at different equivalence ratios. Experimental results show that the air and fuel velocity strongly influences the appearance of LPG diffusion flame. At a constant fuel velocity, blue zone increases and the luminous zone decreases with the increase in air velocity. It is observed that the SFLF increases with increasing air velocity at a constant fuel velocity. It is observed that the blowoff velocity of the diffusion flame increases as fuel velocity increases. Comparison of emission for flame with and without swirl indicates that swirl results in low emission of CO and higher flame stability. Swirler with 45° vanes achieved the lowest CO emission of 30 ppm at Φ = 1.3.


Sign in / Sign up

Export Citation Format

Share Document