Ageing and Failure Modes of IGBT Modules in High-Temperature Power Cycling

2011 ◽  
Vol 58 (10) ◽  
pp. 4931-4941 ◽  
Author(s):  
Vanessa Smet ◽  
Francois Forest ◽  
Jean-Jacques Huselstein ◽  
Frédéric Richardeau ◽  
Zoubir Khatir ◽  
...  

Author(s):  
M. Bouarroudj ◽  
Z. Khatir ◽  
J.P. Ousten ◽  
L. Dupont ◽  
S. Lefebvre ◽  
...  


2007 ◽  
Vol 47 (9-11) ◽  
pp. 1719-1724 ◽  
Author(s):  
M. Bouarroudj ◽  
Z. Khatir ◽  
J.P. Ousten ◽  
F. Badel ◽  
L. Dupont ◽  
...  


2019 ◽  
Vol 32 (3) ◽  
pp. 306-315 ◽  
Author(s):  
Liang Xu ◽  
Yi He ◽  
Shaohua Ma ◽  
Li Hui

T800/high-temperature epoxy resin composites with different hole shapes were subjected to hygrothermal ageing and thermal-oxidative ageing, and the effects of these different ageing methods on the open-hole properties of the composites were investigated, including analyses of the mass changes, surface topography changes (before and after ageing), fracture morphologies, open-hole compressive performance, dynamic mechanical properties and infrared spectrum. The results showed that only physical ageing occurred under hygrothermal ageing (70°C and 85% relative humidity), and the equilibrium moisture absorption rate was only approximately 0.72%. In contrast, under thermal-oxidative ageing at 190°C, both physical ageing and chemical ageing occurred. After ageing, the open-hole compressive strength of the composite laminates with different hole shapes decreased significantly, but the open-hole compressive strength after thermal-oxidative ageing was greater than that after hygrothermal ageing. Among the aged and unaged laminates, the laminates with round holes exhibited the largest open-hole compressive strength, followed by those with the elliptical holes, square holes and diamond holes. The failure modes of the laminates were all through-hole failures. The unaged samples had a glass transition temperature ( T g) of 226°C, whereas the T g of the samples after hygrothermal ageing was 208°C, which is 18°C less than that of the unaged samples, and the T g of the samples after thermal-oxidative ageing was 253°C, which is 27°C greater than that of the unaged samples.





Author(s):  
Naoto Kasahara ◽  
Izumi Nakamura ◽  
Hideo Machida ◽  
Hitoshi Nakamura ◽  
Koji Okamoto

As the important lessons learned from the Fukushima-nuclear power plant accident, mitigation of failure consequences and prevention of catastrophic failure became essential against severe accident and excessive earthquake conditions. To improve mitigation measures and accident management, clarification of failure behaviors with locations is premise under design extension conditions such as severe accidents and earthquakes. Design extension conditions induce some different failure modes from design conditions. Furthermore, best estimation for these failure modes are required for preparing countermeasures and management. Therefore, this study focused on identification of failure modes under design extension conditions. To observe ultimate failure behaviors of structures under extreme loadings, new experimental techniques were adopted with simulation materials such as lead and lead-antimony alloy, which has very small yield stress. Postulated failure modes of main components under design extension conditions were investigated according three categories of loading modes. The first loading mode is high temperature and internal pressure. Under this mode, ductile fracture and local failure were investigated. At the structural discontinuities, local failure may become dominant. The second is high temperature and external pressure loading mode. Buckling and fracture were investigated. Buckling occurs however hardly break without additional loads or constraints. The last loading is excessive earthquake. Ratchet deformation, collapse, and fatigue were investigated. Among them, low-cycle fatigue is dominant.



2021 ◽  
Author(s):  
Alireza Sayyidmousavi

Polymer matrix composites (PMC’s) are widely used in critical aerospace structures due to their numerous advantageous mechanical properties. Recently, PMC’s have been considered for high temperature applications where viscoelasticity arising from the time dependent nature of the polymer matrix becomes an important consideration. This inherent viscoelasticity can significantly influence deformation, strength and failure response of these materials under different loading modes and environmental factors. With a potentially large number of plies of different fiber directions and perhaps material properties, determining a fatigue failure criterion of any degree of generality through experiments only, may seem to be an unrealistic task. This difficult situation may be mitigated through the development of suitable theoretical micro or macro mechanical models that are founded on considering the fatigue failure of the constituting laminas. The micro‐approach provides a detailed examination of the individual failure modes in each of the constituent materials i.e. fiber, matrix. In this work, a micromechanical approach is used to study the role of viscoelasticity on the fatigue behavior of polymer matrix composites. In particular, the study examines the interaction of fatigue and creep in polymer matrix composites. The matrix phase is modeled as a vicoelastic material using Schapery’s single integral constitutive equation. Taking viscoelsticity into account allows the study of creep strain evolution during the fatigue loading. The fatigue failure criterion is expressed in terms of the fatigue failure functions of the constituent materials. The micromechanical model is also used to calculate these fatigue failure functions from the knowledge of the S‐N diagrams of the composite material in longitudinal, transverse and shear loadings thus eliminating the need for any further experimentation. Unlike the previous works, the present study can distinguish between the strain evolution due to fatigue and creep. The results can clearly show the contribution made by the effect of viscoelasticity to the total strain evolution during the fatigue life of the specimen. Although the effect of viscoelsticity is found to increase with temperature, its contribution to strain development during fatigue is compromised by the shorter life of the specimen when compared to lower temperatures.



Author(s):  
Wenzhao Liu ◽  
Dao Zhou ◽  
Francesco Iannuzzo ◽  
Michael Hartmann ◽  
Frede Blaabjerg


Sign in / Sign up

Export Citation Format

Share Document