Flux–Charge Analysis of Two-Memristor-Based Chua's Circuit: Dimensionality Decreasing Model for Detecting Extreme Multistability

2020 ◽  
Vol 67 (3) ◽  
pp. 2197-2206 ◽  
Author(s):  
Mo Chen ◽  
Mengxia Sun ◽  
Han Bao ◽  
Yihua Hu ◽  
Bocheng Bao
Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Han Bao ◽  
Tao Jiang ◽  
Kaibin Chu ◽  
Mo Chen ◽  
Quan Xu ◽  
...  

This paper investigates extreme multistability and its controllability for an ideal voltage-controlled memristor emulator-based canonical Chua’s circuit. With the voltage-current model, the initial condition-dependent extreme multistability is explored through analyzing the stability distribution of line equilibrium point and then the coexisting infinitely many attractors are numerically uncovered in such a memristive circuit by the attraction basin and phase portraits. Furthermore, based on the accurate constitutive relation of the memristor emulator, a set of incremental flux-charge describing equations for the memristor-based canonical Chua’s circuit are formulated and a dimensionality reduction model is thus established. As a result, the initial condition-dependent dynamics in the voltage-current domain is converted into the system parameter-associated dynamics in the flux-charge domain, which is confirmed by numerical simulations and circuit simulations. Therefore, a controllable strategy for extreme multistability can be expediently implemented, which is greatly significant for seeking chaos-based engineering applications of multistable memristive circuits.


2018 ◽  
Vol 28 (10) ◽  
pp. 1850120 ◽  
Author(s):  
Mo Chen ◽  
Bocheng Bao ◽  
Tao Jiang ◽  
Han Bao ◽  
Quan Xu ◽  
...  

It is known that dynamical behaviors of memristive circuit are significantly affected by its initial states, which are difficult to be explicitly analyzed or controlled in voltage–current domain and have become great obstacles for its potential engineering applications. In this paper, the complex initial state-dependent dynamical behaviors of a physically realized memristive Chua’s circuit are detailed and investigated using incremental flux-charge modeling method. This circuit is modeled in terms of incremental flux and charge, in which the original line equilibrium point is converted into some determined equilibrium points relying on the initial states of the dynamic elements. Moreover, the special initial state-dependent behaviors are transformed into system parameter-associated behaviors. Consequently, the detailed influences of each initial state, even the occurrence of hidden oscillations, can readily be theoretically interpreted. Finally, the initial state-dependent behaviors are physically captured and directed in the equivalent realization circuit of the incremental flux-charge model.


1993 ◽  
Vol 03 (02) ◽  
pp. 645-668 ◽  
Author(s):  
A. N. SHARKOVSKY ◽  
YU. MAISTRENKO ◽  
PH. DEREGEL ◽  
L. O. CHUA

In this paper, we consider an infinite-dimensional extension of Chua's circuit (Fig. 1) obtained by replacing the left portion of the circuit composed of the capacitance C2 and the inductance L by a lossless transmission line as shown in Fig. 2. As we shall see, if the remaining capacitance C1 is equal to zero, the dynamics of this so-called time-delayed Chua's circuit can be reduced to that of a scalar nonlinear difference equation. After deriving the corresponding 1-D map, it will be possible to determine without any approximation the analytical equation of the stability boundaries of cycles of every period n. Since the stability region is nonempty for each n, this proves rigorously that the time-delayed Chua's circuit exhibits the "period-adding" phenomenon where every two consecutive cycles are separated by a chaotic region.


1994 ◽  
Vol 04 (02) ◽  
pp. 117-159 ◽  
Author(s):  
LEON O. CHUA

More than 200 papers, two special issues (Journal of Circuits, Systems, and Computers, March, June, 1993, and IEEE Trans. on Circuits and Systems, vol. 40, no. 10, October, 1993), an International Workshop on Chua’s Circuit: chaotic phenomena and applica tions at NOLTA’93, and a book (edited by R.N. Madan, World Scientific, 1993) on Chua’s circuit have been published since its inception a decade ago. This review paper attempts to present an overview of these timely publications, almost all within the last six months, and to identify four milestones of this very active research area. An important milestone is the recent fabrication of a monolithic Chua’s circuit. The robustness of this IC chip demonstrates that an array of Chua’s circuits can also be fabricated into a monolithic chip, thereby opening the floodgate to many unconventional applications in information technology, synergetics, and even music. The second milestone is the recent global unfolding of Chua’s circuit, obtained by adding a linear resistor in series with the inductor to obtain a canonical Chua’s circuit— now generally referred to as Chua’s oscillator. This circuit is most significant because it is structurally the simplest (it contains only 6 circuit elements) but dynamically the most complex among all nonlinear circuits and systems described by a 21-parameter family of continuous odd-symmetric piecewise-linear vector fields. The third milestone is the recent discovery of several important new phenomena in Chua’s circuits, e.g., stochastic resonance, chaos-chaos type intermittency, 1/f noise spectrum, etc. These new phenomena could have far-reaching theoretical and practical significance. The fourth milestone is the theoretical and experimental demonstration that Chua’s circuit can be easily controlled from a chaotic regime to a prescribed periodic or constant orbit, or it can be synchronized with 2 or more identical Chua’s circuits, operating in an oscillatory, or a chaotic regime. These recent breakthroughs have ushered in a new era where chaos is deliberately created and exploited for unconventional applications, e.g. secure communication.


Sign in / Sign up

Export Citation Format

Share Document