Controlling the chaotic n-scroll Chua’s circuit with two low pass filters

2006 ◽  
Vol 29 (2) ◽  
pp. 400-406 ◽  
Author(s):  
Yan-li Zou ◽  
Jie Zhu
2006 ◽  
Vol 16 (04) ◽  
pp. 1089-1096 ◽  
Author(s):  
YAN-LI ZOU ◽  
JIE ZHU ◽  
GUANRONG CHEN

In this paper, stabilization of fixed points of n-scroll Chua's circuit is investigated. Two adaptive control methods are proposed. One is based on an unstable low pass filter; the other is based on a stable and an unstable low pass filter. The simulation results verify the effectiveness of the two proposed control methods and performance comparisons show that the second control method is superior to the first one with regard to control speed and attraction basins.


1996 ◽  
Vol 06 (01) ◽  
pp. 179-183 ◽  
Author(s):  
J. M. LIPTON ◽  
K. P. DABKE

The effects of both hard and soft nonlinearities are examined in the frequency domain. Softening the hard nonlinearity in Chua's diode has a similar effect to low pass filtering or reducing the level of high frequency noise components.


2017 ◽  
Vol 2017 (12) ◽  
pp. 653-655 ◽  
Author(s):  
Han Bao ◽  
Pingye Wu ◽  
Bo-Cheng Bao ◽  
Mo Chen ◽  
Huagan Wu

2020 ◽  
Vol 34 (14) ◽  
pp. 2050146
Author(s):  
Dawei Ding ◽  
Jun Luo ◽  
Xiangyu Shan ◽  
Yongbing Hu ◽  
Zongli Yang ◽  
...  

In this paper, in order to analyze the coexistent multiple-stability of system, a fractional-order memristive Chua’s circuit with time delay is proposed, which is composed of a passive flux-controlled memristor and a negative conductance as a parallel combination. First, the Chua’s circuit can be considered as a nonlinear feedback system consisting of a nonlinear block and a linear block with low-pass properties. In the complex plane, the nonlinear element of the system can be approximated by a variable gain called a describing function. Second, compared with conventional computation, the describing function can accurately predict the hidden dynamics, fixed points, periodic orbits, unstable behaviors of the system. By using this method, the full mapping of the system dynamics in parameter spaces is presented, and the coexistent multiple-stability of the system is investigated in detail. Third, using bifurcation diagram, phase diagram, time domain diagram and power spectrum diagram, the dynamical behaviors of the system under different system parameters and initial values are discussed. Finally, based on Adams–Bashforth–Moulton (ABM) method, the correctness of theoretical analysis is verified by numerical simulation, which shows that the fractional-order delayed memristive Chua’s system has complex coexistent multiple-stability.


2015 ◽  
Vol E98.C (2) ◽  
pp. 156-161
Author(s):  
Hidenori YUKAWA ◽  
Koji YOSHIDA ◽  
Tomohiro MIZUNO ◽  
Tetsu OWADA ◽  
Moriyasu MIYAZAKI
Keyword(s):  
Ka Band ◽  
Low Pass ◽  

2011 ◽  
Vol 5 (2) ◽  
pp. 155-162
Author(s):  
Jose de Jesus Rubio ◽  
Diana M. Vazquez ◽  
Jaime Pacheco ◽  
Vicente Garcia

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 328
Author(s):  
Mikulas Huba ◽  
Damir Vrancic

The paper investigates and explains a new simple analytical tuning of proportional-integrative-derivative (PID) controllers. In combination with nth order series binomial low-pass filters, they are to be applied to the double-integrator-plus-dead-time (DIPDT) plant models. With respect to the use of derivatives, it should be understood that the design of appropriate filters is not only an implementation problem. Rather, it is also critical for the resulting performance, robustness and noise attenuation. To simplify controller commissioning, integrated tuning procedures (ITPs) based on three different concepts of filter delay equivalences are presented. For simultaneous determination of controller + filter parameters, the design uses the multiple real dominant poles method. The excellent control loop performance in a noisy environment and the specific advantages and disadvantages of the resulting equivalences are discussed. The results show that none of them is globally optimal. Each of them is advantageous only for certain noise levels and the desired degree of their filtering.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 563
Author(s):  
Jorge Pérez-Bailón ◽  
Belén Calvo ◽  
Nicolás Medrano

This paper presents a new approach based on the use of a Current Steering (CS) technique for the design of fully integrated Gm–C Low Pass Filters (LPF) with sub-Hz to kHz tunable cut-off frequencies and an enhanced power-area-dynamic range trade-off. The proposed approach has been experimentally validated by two different first-order single-ended LPFs designed in a 0.18 µm CMOS technology powered by a 1.0 V single supply: a folded-OTA based LPF and a mirrored-OTA based LPF. The first one exhibits a constant power consumption of 180 nW at 100 nA bias current with an active area of 0.00135 mm2 and a tunable cutoff frequency that spans over 4 orders of magnitude (~100 mHz–152 Hz @ CL = 50 pF) preserving dynamic figures greater than 78 dB. The second one exhibits a power consumption of 1.75 µW at 500 nA with an active area of 0.0137 mm2 and a tunable cutoff frequency that spans over 5 orders of magnitude (~80 mHz–~1.2 kHz @ CL = 50 pF) preserving a dynamic range greater than 73 dB. Compared with previously reported filters, this proposal is a competitive solution while satisfying the low-voltage low-power on-chip constraints, becoming a preferable choice for general-purpose reconfigurable front-end sensor interfaces.


Sign in / Sign up

Export Citation Format

Share Document