Output-voltage-tracking Control for Buck Converters using Variable Convergence Rate Mechanism without Current Feedback

Author(s):  
Seok-Kyoon Kim ◽  
Ki-Chan Kim ◽  
Choon Ki Ahn
Author(s):  
Hyo Chan Lee ◽  
Yeon Ji ◽  
Sangwoo Park ◽  
Bonn Koo ◽  
Seok-Kyoon Kim

Author(s):  
Waleed Ishaq Hameed ◽  
Baha Aldeen Sawadi ◽  
Ali Muayed

<span lang="EN-US">This paper deals with voltage tracking control of DC- DC boost converter based on Fuzzy neural network. Maintaining the output voltage of the boost converter in some applications are very important, especially for sudden change in the load or disturbance in the input voltage. Traditional control methods usually have some disadvantages in eliminating these disturbances, as the speed of response to these changes is slow and thus affect the regularity of the output voltage of the converter. The strategy is to sense the output voltage across the load and compare it with the reference voltage to ensure that it follows the required reference voltages. In this research, fuzzy neural was introduced to achieve the purpose of voltage tracking by training the parameter of controller based on previous data. These data sets are the sensing input voltage of the converter and the value of the output load changes. To establish the performance of proposed method, MATLAB/SIMULINK environments are presented, simulation results shows that proposed method works more precisely, faster in response and elimination the disturbances</span>


2020 ◽  
Vol 11 (4) ◽  
pp. 64 ◽  
Author(s):  
Zhengxin Liu ◽  
Jiuyu Du ◽  
Boyang Yu

Direct current to direct current (DC/DC) converters are required to have higher voltage gains in some applications for electric vehicles, high-voltage level charging systems and fuel cell electric vehicles. Therefore, it is greatly important to carry out research on high voltage gain DC/DC converters. To improve the efficiency of high voltage gain DC/DC converters and solve the problems of output voltage ripple and robustness, this paper proposes a double-boost DC/DC converter. Based on the small-signal model of the proposed converter, a double closed-loop controller with voltage–current feedback and input voltage feedforward is designed. The experimental results show that the maximum efficiency of the proposed converter exceeds 95%, and the output voltage ripple factor is 0.01. Compared with the traditional boost converter and multi-phase interleaved DC/DC converter, the proposed topology has certain advantages in terms of voltage gain, device stress, number of devices, and application of control algorithms.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Yuriy Konstantinovich Rybin

In recent years, many articles came out where one could find the analysis of oscillatory systems of electric sinusoid signals generators with amplifiers called CFOA—current feedback operational amplifiers. As a rule, the analysis of such systems is made by applying mathematical modeling methods on the basis of the amplifier linear model, which does not allow estimating advantages and disadvantages of the systems realized with those amplifiers in comparison with classical systems. A nonlinear model of a current feedback operational amplifier (CFOA) is introduced in the paper; nonlinearity of “current mirror” is reflected in the form of current double limiting. The analysis of two known oscillatory systems has been carried out with the use of this non-linear model. Dependence between current limiting level, output voltage amplitude, and maximum oscillation frequency has been obtained. The paper shows that output current limiting under current output connection of capacitive load reduces frequency range and output voltage amplitude considerably and increases harmonic distortions in comparison with classical oscillatory systems. The research done has found that the application of new amplifiers does not give considerable advantages to the oscillatory systems with CFOA.


2021 ◽  
Vol 18 (4) ◽  
pp. 172988142110297
Author(s):  
Yaru Xu ◽  
Rong Liu ◽  
Jia Liu ◽  
Jiancheng Zhang

As industrial robots are characterized by flexibility, load variation, and unknown interference, it is necessary to develop a control strategy with strong robustness and adaptability, fast convergence rate, and simple structure. Sliding mode control is a special method widely used to handle nonlinear robot control. However, the existing control law for sliding mode control has limitations in the chattering and convergence rate. The sliding mode manifold and reaching law are firstly discussed in this article. In the meanwhile, a proposed control law for sliding mode control combining linear sliding mode manifold and double-power reaching law is developed, which is based on the robot dynamic equation derived by the Udwadia–Kalaba theory. Furthermore, a compared control law for sliding mode control combining linear sliding mode manifold with exponential reaching law is presented to test the proposed control law for sliding mode control. The comparison indicates that the proposed law effectively improves the performance in convergence rate and the chattering of constraint tracking control. Finally, the two control laws for sliding mode control are applied to the Selective Compliance Articulated Robot Arm robot system with modeling error and uncertain external disturbance to demonstrate the merit and validation of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document