SPASYN-an electromagnetic relative position and orientation tracking system

1980 ◽  
Vol 29 (4) ◽  
pp. 462-466 ◽  
Author(s):  
Jack B. Kuipers
2013 ◽  
Vol 196 ◽  
pp. 169-180 ◽  
Author(s):  
Adam Słota

In the paper a trajectory generation algorithm for two robots’ coordinated motion is presented. Two instances of the algorithm, each for one robot, run in the same time and calculate trajectories’ position and orientation coordinates. Initial and end robots’ end-effectors poses are defined and values of linear and angular speeds are programmed. To minimize relative position and orientation errors an idea of corrective motion is introduced. Trajectory coordinates are calculated as the sum of programmed and corrective motion. The algorithm was implemented in a simulation environment and results of simulation are presented. Static accuracy analysis for general case and stability verification for fixed values of robots’ parameters are described. Finally, an outline of proposed procedure of building a virtual environment for reachability verification and collision checking is presented.


2021 ◽  
Vol 11 (14) ◽  
pp. 6390
Author(s):  
Marcin Maciejewski

The paper presents the research of the SteamVR tracker developed for a man-portable air-defence training system. The tests were carried out in laboratory conditions, with the tracker placed on the launcher model along with elements ensuring the faithful reproduction of operational conditions. During the measurements, the static tracker was moved and rotated in a working area. The range of translations and rotations corresponded to the typical requirements of a shooting simulator application. The results containing the registered position and orientation values were plotted on 3D charts which showed the tracker’s operation. Further analyses determined the values of the systematic and random errors for measurements of the SteamVR system operating with a custom-made tracker. The obtained results with random errors of 0.15 mm and 0.008° for position and orientation, respectively, proved the high precision of the measurements.


i-Perception ◽  
2017 ◽  
Vol 8 (3) ◽  
pp. 204166951770820 ◽  
Author(s):  
Diederick C. Niehorster ◽  
Li Li ◽  
Markus Lappe

The advent of inexpensive consumer virtual reality equipment enables many more researchers to study perception with naturally moving observers. One such system, the HTC Vive, offers a large field-of-view, high-resolution head mounted display together with a room-scale tracking system for less than a thousand U.S. dollars. If the position and orientation tracking of this system is of sufficient accuracy and precision, it could be suitable for much research that is currently done with far more expensive systems. Here we present a quantitative test of the HTC Vive’s position and orientation tracking as well as its end-to-end system latency. We report that while the precision of the Vive’s tracking measurements is high and its system latency (22 ms) is low, its position and orientation measurements are provided in a coordinate system that is tilted with respect to the physical ground plane. Because large changes in offset were found whenever tracking was briefly lost, it cannot be corrected for with a one-time calibration procedure. We conclude that the varying offset between the virtual and the physical tracking space makes the HTC Vive at present unsuitable for scientific experiments that require accurate visual stimulation of self-motion through a virtual world. It may however be suited for other experiments that do not have this requirement.


2011 ◽  
Vol 268-270 ◽  
pp. 1200-1204
Author(s):  
Li Xin Zhang ◽  
Quan Liang Cao

Electromagnetic tracking systems are often used to track location and orientation of an implantable medical instrument in the human body. This paper presents a 3D tracking system that is based on AC magnetic field transmitting and sensing. The concept and principle to detect position and orientation are introduced. Then the tracking behaviors for different degree-of-freedom (DOF) are investigated using finite element analysis. The tracking errors on the position and orientation accuracy are presented using the equivalent dipole field model and some improving measures are proposed, especially for the tracking at close region. We can find that using the finite element analysis to simulate the mutual inductance between transmitting and sensing coils is an effective method to research the tracking behaviors.


2011 ◽  
Vol 130-134 ◽  
pp. 1196-1199
Author(s):  
Li Kun Liu ◽  
Zi Zi Ouyang ◽  
Sen Wang ◽  
Yi Wang ◽  
Xiao Dong Chen ◽  
...  

A New real-time position and orientation tracking system for endoscopy is described. Three coils sequentiallyfed with current comprise the excitation source which will produce magnetic field. According to Biot-Savart-Laplace law, flux intensity data detected by three-axis magnetic sensor could be interpreted into information that will reflect the sensor's specific position, thus realizing the position determination. Also, data detected by the magnetic sensor and gravity sensor changes in connection with the spatial angles. By researching the change law between the two, spatial angles of the sensor is calculated, thus realizing orientation determination. It is shown errors in position determination is,errors in orientation determination is , the tracking frequency of the system is 10 Hz.


2018 ◽  
Author(s):  
Leia C Shum ◽  
Bulmaro A Valdés ◽  
HF Machiel Van der Loos

BACKGROUND As commercial motion tracking technology becomes more readily available, it is necessary to evaluate the accuracy of these systems before using them for biomechanical and motor rehabilitation applications. OBJECTIVE This study aimed to evaluate the relative position accuracy of the Oculus Touch controllers in a 2.4 x 2.4 m play-space. METHODS Static data samples (n=180) were acquired from the Oculus Touch controllers at step sizes ranging from 5 to 500 mm along 16 different points on the play-space floor with graph paper in the x (width), y (height), and z (depth) directions. The data were compared with reference values using measurements from digital calipers, accurate to 0.01 mm; physical blocks, for which heights were confirmed with digital calipers; and for larger step sizes (300 and 500 mm), a ruler with hatch marks to millimeter units. RESULTS It was found that the maximum position accuracy error of the system was 3.5 ± 2.5 mm at the largest step size of 500 mm along the z-axis. When normalized to step size, the largest error found was 12.7 ± 9.9% at the smallest step size in the y-axis at 6.23 mm. When the step size was <10 mm in any direction, the relative position accuracy increased considerably to above 2% (approximately 2 mm at maximum). An average noise value of 0.036 mm was determined. A comparison of these values to cited visual, goniometric, and proprioceptive resolutions concludes that this system is viable for tracking upper-limb movements for biomechanical and rehabilitation applications. The accuracy of the system was also compared with accuracy values from previous studies using other commercially available devices and a multicamera, marker-based professional motion tracking system. CONCLUSIONS The study found that the linear position accuracy of the Oculus Touch controllers was within an agreeable range for measuring human kinematics in rehabilitative upper-limb exercise protocols. Further testing is required to ascertain acceptable repeatability in multiple sessions and rotational accuracy.


Sign in / Sign up

Export Citation Format

Share Document