scholarly journals Determining the Accuracy of Oculus Touch Controllers for Motor Rehabilitation Applications Using Quantifiable Upper Limb Kinematics: Validation Study (Preprint)

2018 ◽  
Author(s):  
Leia C Shum ◽  
Bulmaro A Valdés ◽  
HF Machiel Van der Loos

BACKGROUND As commercial motion tracking technology becomes more readily available, it is necessary to evaluate the accuracy of these systems before using them for biomechanical and motor rehabilitation applications. OBJECTIVE This study aimed to evaluate the relative position accuracy of the Oculus Touch controllers in a 2.4 x 2.4 m play-space. METHODS Static data samples (n=180) were acquired from the Oculus Touch controllers at step sizes ranging from 5 to 500 mm along 16 different points on the play-space floor with graph paper in the x (width), y (height), and z (depth) directions. The data were compared with reference values using measurements from digital calipers, accurate to 0.01 mm; physical blocks, for which heights were confirmed with digital calipers; and for larger step sizes (300 and 500 mm), a ruler with hatch marks to millimeter units. RESULTS It was found that the maximum position accuracy error of the system was 3.5 ± 2.5 mm at the largest step size of 500 mm along the z-axis. When normalized to step size, the largest error found was 12.7 ± 9.9% at the smallest step size in the y-axis at 6.23 mm. When the step size was <10 mm in any direction, the relative position accuracy increased considerably to above 2% (approximately 2 mm at maximum). An average noise value of 0.036 mm was determined. A comparison of these values to cited visual, goniometric, and proprioceptive resolutions concludes that this system is viable for tracking upper-limb movements for biomechanical and rehabilitation applications. The accuracy of the system was also compared with accuracy values from previous studies using other commercially available devices and a multicamera, marker-based professional motion tracking system. CONCLUSIONS The study found that the linear position accuracy of the Oculus Touch controllers was within an agreeable range for measuring human kinematics in rehabilitative upper-limb exercise protocols. Further testing is required to ascertain acceptable repeatability in multiple sessions and rotational accuracy.

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Eduardo Piña-Martínez ◽  
Ricardo Roberts ◽  
Salvador Leal-Merlo ◽  
Ernesto Rodriguez-Leal

Exoskeletons arise as the common ground between robotics and biomechanics, where rehabilitation is the main field in which these two disciplines find cohesion. One of the most relevant challenges in upper limb exoskeleton design relies in the high complexity of the human shoulder, where current devices implement elaborate systems only to emulate the drifting center of rotation of the shoulder joint. This paper proposes the use of 3D scanning vision technologies to ease the design process and its implementation on a variety of subjects, while a motion tracking system based on vision technologies is applied to assess the exoskeleton reachable workspace compared with an asymptomatic subject. Furthermore, the anatomic fitting index is proposed, which compares the anatomic workspace of the user with the exoskeleton workspace and provides insight into its features. This work proposes an exoskeleton architecture that considers the clavicle motion over the coronal plane whose workspace is determined by substituting the direct kinematics model with the dimensional parameters of the user. Simulations and numerical examples are used to validate the analytical results and to conciliate the experimental results provided by the vision tracking system.


Work ◽  
2021 ◽  
Vol 68 (s1) ◽  
pp. S209-S221
Author(s):  
Lu Han ◽  
Hechen Zhang ◽  
Zhongxia Xiang ◽  
Jinze Shang ◽  
Shabila Anjani ◽  
...  

BACKGROUND: The contrast between a bright computer screen and a dark ambient environment may influence comfort of the users, especially on their eyes. OBJECTIVE: The objective of this research is to identify the optimal desktop lighting for the comfortable use of the computer screen in a dark environment. METHODS: An experiment was designed where seven illumination setups were introduced for the users to perform their leisure tasks on a computer screen. Fifteen healthy subjects participated in the experiments. During each session, durations of the eye blinks, fixations and saccades of the user were recorded by an eye tracker. His/her neck and trunk movements were recorded by a motion tracking system as well. The comfort/discomfort questionnaire, localized postural discomfort questionnaire, NASA task load index and computer user questionnaire were used to record the overall comfort/discomfort, the local perceived physical discomfort, the cognitive workload, and general/eye health problems, respectively. RESULTS: Subjective and objective measurement results indicated that users felt more comfortable with high intensity warm lights using a computer screen. We also identified that the eye fixation durations, as well as the scores of two questions in the computer user questionnaire, have significant negative correlations with comfort. On the other side, the durations of blinks and the scores of three questions in the computer user questionnaire, were significantly correlated with discomfort. CONCLUSION: The warm (3000K) and high intensity (1500 lux) light reduced the visual and cognitive fatigue of the user and therefore improve the comfort of the user during the use of a computer screen.


2017 ◽  
Vol 14 (5) ◽  
pp. 172988141773275 ◽  
Author(s):  
Francisco J Perez-Grau ◽  
Fernando Caballero ◽  
Antidio Viguria ◽  
Anibal Ollero

This article presents an enhanced version of the Monte Carlo localization algorithm, commonly used for robot navigation in indoor environments, which is suitable for aerial robots moving in a three-dimentional environment and makes use of a combination of measurements from an Red,Green,Blue-Depth (RGB-D) sensor, distances to several radio-tags placed in the environment, and an inertial measurement unit. The approach is demonstrated with an unmanned aerial vehicle flying for 10 min indoors and validated with a very precise motion tracking system. The approach has been implemented using the robot operating system framework and works smoothly on a regular i7 computer, leaving plenty of computational capacity for other navigation tasks such as motion planning or control.


2008 ◽  
Author(s):  
Mohammed Goryawala ◽  
Misael Del Valle ◽  
Jiali Wang ◽  
James Byrne ◽  
Juan Franquiz ◽  
...  

2021 ◽  
Vol 11 (14) ◽  
pp. 6390
Author(s):  
Marcin Maciejewski

The paper presents the research of the SteamVR tracker developed for a man-portable air-defence training system. The tests were carried out in laboratory conditions, with the tracker placed on the launcher model along with elements ensuring the faithful reproduction of operational conditions. During the measurements, the static tracker was moved and rotated in a working area. The range of translations and rotations corresponded to the typical requirements of a shooting simulator application. The results containing the registered position and orientation values were plotted on 3D charts which showed the tracker’s operation. Further analyses determined the values of the systematic and random errors for measurements of the SteamVR system operating with a custom-made tracker. The obtained results with random errors of 0.15 mm and 0.008° for position and orientation, respectively, proved the high precision of the measurements.


Sign in / Sign up

Export Citation Format

Share Document