Design, Realization, and Experimental Characterization of an Admittance Cell for Low-Frequency Dielectric Permittivity Measurements on Liquids

2016 ◽  
Vol 65 (1) ◽  
pp. 104-111 ◽  
Author(s):  
Emanuele Piuzzi ◽  
Simone Chicarella ◽  
Andrea Cataldo ◽  
Egidio De Benedetto ◽  
Giuseppe Cannazza
Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1173
Author(s):  
Ilze Beverte ◽  
Ugis Cabulis ◽  
Sergejs Gaidukovs

As a non-metallic composite material, widely applied in industry, rigid polyurethane (PUR) foams require knowledge of their dielectric properties. In experimental determination of PUR foams’ dielectric properties protection of one-side capacitive sensor’s active area from adverse effects caused by the PUR foams’ test objects has to be ensured. In the given study, the impact of polytetrafluoroethylene (PTFE) films, thickness 0.20 mm and 0.04 mm, in covering or simulated coating the active area of one-side access capacitive sensor’ electrodes on the experimentally determined true dielectric permittivity spectra of rigid PUR foams is estimated. Penetration depth of the low frequency excitation field into PTFE and PUR foams is determined experimentally. Experiments are made in order to evaluate the difference between measurements on single PUR foams’ samples and on complex samples “PUR foams + PTFE film” with two calibration modes. A modification factor and a small modification criterion are defined and values of modifications are estimated in numerical calculations. Conclusions about possible practical applications of PTFE films in dielectric permittivity measurements of rigid PUR foams with one-side access capacitive sensor are made.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
V. Sivadas ◽  
K. Balaji ◽  
Antriksha Vishwakarma ◽  
Sundar Ram Manikandan

Abstract The study focuses on experimental characterization of the primary atomization associated with an effervescent atomizer. Unlike the existing designs available in the literature that inject air perpendicular to the liquid flow direction, the present atomizer design utilizes coflowing air configuration. In doing so, the aerodynamic shear at the liquid–gas interface create instability and enhance the subsequent jet breakup. Both integrated and intrinsic properties of the liquid jet were extracted by utilizing high-speed flow visualization techniques. The integrated property consists of breakup length, while the intrinsic property involves primary and intermediate breakup frequencies. The primary instability is characterized by low-frequency sinusoidal mode, whereas the intermediate instability consists of high-frequency dilatational mode. Dimensionless plots of these parameters with Weber number ratio leads to a better collapse of data, thereby generating appropriate universal functions. The combined diagram of frequencies converge with increasing relative velocity. This may be due to the dominance of energy consuming sinusoidal wave as the aerodynamic shear increases.


2016 ◽  
Author(s):  
Megan O'Sadnick ◽  
Malcolm Ingham ◽  
Hajo Eicken ◽  
Erin Pettit

Abstract. The seasonal evolution of sea-ice microstructure controls key ice properties, including those governing ocean-atmosphere heat and gas exchange, remote-sensing signatures and the role of the ice cover as a habitat. Non-destructive in situ monitoring of sea-ice microstructure is of value for sea-ice research and operations, but remains elusive to date. We examine the potential for the electric properties of sea ice, which is highly sensitive to the brine distribution within the ice, to serve as a proxy for microstructure and, hence, other ice transport properties. Throughout spring of 2013 and 2014, we measured complex dielectric permittivity in the range of 10 Hz to 95 kHz in landfast ice off the coast of Barrow, Alaska. Temperature and salinity measurements and ice samples provide data to characterize ice microstructure in relation to these permittivity measurements. The results reveal a significant correlation between complex dielectric permittivity, brine volume fraction, and microstructural characteristics including pore volume and connectivity, derived from x-ray microtomography of core samples. The influence of temperature and salinity variations, as well as the relationships between ice properties, microstructural characteristics, and dielectric behavior emerge from multivariate analysis of the combined data set. Our findings suggest some promise for low-frequency permittivity measurements to track seasonal evolution of a combination of mean pore volume, fractional connectivity, and pore surface area-to-volume ratio, which in turn may serve as proxies for key sea-ice transport properties.


2016 ◽  
Vol 10 (6) ◽  
pp. 2923-2940 ◽  
Author(s):  
Megan O'Sadnick ◽  
Malcolm Ingham ◽  
Hajo Eicken ◽  
Erin Pettit

Abstract. The seasonal evolution of sea-ice microstructure controls key ice properties, including those governing ocean–atmosphere heat and gas exchange, remote-sensing signatures, and the role of the ice cover as a habitat. Non-destructive in situ monitoring of sea-ice microstructure is of value for sea-ice research and operations but remains elusive to date. We examine the potential for the electric properties of sea ice, which is highly sensitive to the brine distribution within the ice, to serve as a proxy for microstructure and, hence, other ice transport properties. Throughout spring of 2013 and 2014, we measured complex dielectric permittivity in the range of 10 to 95 kHz in landfast ice off the coast of Barrow (Utqiaġvik), Alaska. Temperature and salinity measurements and ice samples provide data to characterize ice microstructure in relation to these permittivity measurements. The results reveal a significant correlation between complex dielectric permittivity, brine volume fraction, and microstructural characteristics including pore volume and connectivity, derived from X-ray microtomography of core samples. The influence of temperature and salinity variations as well as the relationships between ice properties, microstructural characteristics, and dielectric behavior emerge from multivariate analysis of the combined data set. Our findings suggest some promise for low-frequency permittivity measurements to track seasonal evolution of a combination of mean pore volume, fractional connectivity, and pore surface area-to-volume ratio, which in turn may serve as proxies for key sea-ice transport properties.


1997 ◽  
Vol 500 ◽  
Author(s):  
J. C. Sant Amarina ◽  
K. A. Klein

ABSTRACTElectromagnetic waves can be used to characterize geomaterials and to monitor geo-processes. Permittivity, conductivity, and magnetic permeability measurements provide complementary information. Furthermore, events at different frequencies, such as the various polarization mechanisms, suggest multiple internal scales within materials. Three laboratory studies are presented: characterization of kaolinite-water mixtures with permittivity data, monitoring soil-cement hydration with conductivity measurements, and characterization of kaolinite-iron mixtures with magnetic permeability data. Laboratory techniques face inherent limitations, in particular, low frequency permittivity measurements of highly conductive specimens are not feasible. Likewise, field techniques are restricted by the compromise between the desired resolution and the achievable skin depth.


2002 ◽  
Vol 716 ◽  
Author(s):  
C. L. Gan ◽  
C. V. Thompson ◽  
K. L. Pey ◽  
W. K. Choi ◽  
F. Wei ◽  
...  

AbstractElectromigration experiments have been carried out on simple Cu dual-damascene interconnect tree structures consisting of straight via-to-via (or contact-to-contact) lines with an extra via in the middle of the line. As with Al-based interconnects, the reliability of a segment in this tree strongly depends on the stress conditions of the connected segment. Beyond this, there are important differences in the results obtained under similar test conditions for Al-based and Cu-based interconnect trees. These differences are thought to be associated with variations in the architectural schemes of the two metallizations. The absence of a conducting electromigrationresistant overlayer in Cu technology, and the possibility of liner rupture at stressed vias lead to significant differences in tree reliabilities in Cu compared to Al.


Sign in / Sign up

Export Citation Format

Share Document