Efficient Anomaly Detection for High-Dimensional Sensing Data with One-Class Support Vector Machine

Author(s):  
Yan Qiao ◽  
Kui Wu ◽  
Peng Jin
Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8017
Author(s):  
Nurfazrina M. Zamry ◽  
Anazida Zainal ◽  
Murad A. Rassam ◽  
Eman H. Alkhammash ◽  
Fuad A. Ghaleb ◽  
...  

Wireless Sensors Networks have been the focus of significant attention from research and development due to their applications of collecting data from various fields such as smart cities, power grids, transportation systems, medical sectors, military, and rural areas. Accurate and reliable measurements for insightful data analysis and decision-making are the ultimate goals of sensor networks for critical domains. However, the raw data collected by WSNs usually are not reliable and inaccurate due to the imperfect nature of WSNs. Identifying misbehaviours or anomalies in the network is important for providing reliable and secure functioning of the network. However, due to resource constraints, a lightweight detection scheme is a major design challenge in sensor networks. This paper aims at designing and developing a lightweight anomaly detection scheme to improve efficiency in terms of reducing the computational complexity and communication and improving memory utilization overhead while maintaining high accuracy. To achieve this aim, one-class learning and dimension reduction concepts were used in the design. The One-Class Support Vector Machine (OCSVM) with hyper-ellipsoid variance was used for anomaly detection due to its advantage in classifying unlabelled and multivariate data. Various One-Class Support Vector Machine formulations have been investigated and Centred-Ellipsoid has been adopted in this study due to its effectiveness. Centred-Ellipsoid is the most effective kernel among studies formulations. To decrease the computational complexity and improve memory utilization, the dimensions of the data were reduced using the Candid Covariance-Free Incremental Principal Component Analysis (CCIPCA) algorithm. Extensive experiments were conducted to evaluate the proposed lightweight anomaly detection scheme. Results in terms of detection accuracy, memory utilization, computational complexity, and communication overhead show that the proposed scheme is effective and efficient compared few existing schemes evaluated. The proposed anomaly detection scheme achieved the accuracy higher than 98%, with (𝑛𝑑) memory utilization and no communication overhead.


2020 ◽  
Vol 16 (10) ◽  
pp. 155014772096383
Author(s):  
Yan Qiao ◽  
Xinhong Cui ◽  
Peng Jin ◽  
Wu Zhang

This article addresses the problem of outlier detection for wireless sensor networks. As increasing amounts of observational data are tending to be high-dimensional and large scale, it is becoming increasingly difficult for existing techniques to perform outlier detection accurately and efficiently. Although dimensionality reduction tools (such as deep belief network) have been utilized to compress the high-dimensional data to support outlier detection, these methods may not achieve the desired performance due to the special distribution of the compressed data. Furthermore, because most existed classification methods must solve a quadratic optimization problem in their training stage, they cannot perform well in large-scale datasets. In this article, we developed a new form of classification model called “deep belief network online quarter-sphere support vector machine,” which combines deep belief network with online quarter-sphere one-class support vector machine. Based on this model, we first propose a model training method that learns the radius of the quarter sphere by a sorting method. Then, an online testing method is proposed to perform online outlier detection without supervision. Finally, we compare the proposed method with the state of the arts using extensive experiments. The experimental results show that our method not only reduces the computational cost by three orders of magnitude but also improves the detection accuracy by 3%–5%.


2013 ◽  
Vol 12 (06) ◽  
pp. 1175-1199 ◽  
Author(s):  
MINGHE SUN

A multi-class support vector machine (M-SVM) is developed, its dual is derived, its dual is mapped to high dimensional feature spaces using inner product kernels, and its performance is tested. The M-SVM is formulated as a quadratic programming model. Its dual, also a quadratic programming model, is very elegant and is easier to solve than the primal. The discriminant functions can be directly constructed from the dual solution. By using inner product kernels, the M-SVM can be built and nonlinear discriminant functions can be constructed in high dimensional feature spaces without carrying out the mappings from the input space to the feature spaces. The size of the dual, measured by the number of variables and constraints, is independent of the dimension of the input space and stays the same whether the M-SVM is built in the input space or in a feature space. Compared to other models published in the literature, this M-SVM is equally or more effective. An example is presented to demonstrate the dual formulation and solution in feature spaces. Very good results were obtained on benchmark test problems from the literature.


Sign in / Sign up

Export Citation Format

Share Document