scholarly journals Robust Bayesian Analysis of Early-Stage Parkinson’s Disease Progression Using DaTscan Images

Author(s):  
Yuan Zhou ◽  
Sule Tinaz ◽  
Hemant D. Tagare
2021 ◽  
Vol 13 ◽  
Author(s):  
Lingling Zhong ◽  
KeJu Ju ◽  
Ainian Chen ◽  
Hua Cao

Parkinson’s disease (PD) is a chronic and progressive degenerative disease of the central nervous system. Degenerative neuropathy can occur in patients with PD even before typical clinical symptoms appear in the preclinical stage. Therefore, if the early diagnosis of degenerative diseases can be timely and the correlation with the disease progression can be explored, the disease progression will be slowed down and the quality of life of patients will be improved. In this study, the circRNA microarray was employed to screen the dysregulated circRNA in plasma samples of PD. Four circRNAs (circ_0085869, circ_0004381, circ_0017204, and circ_0090668) were obtained with increased levels in PD patients by cross comparison and preliminary verification in PD comparing with healthy controls. Further validation found the circRNA panel was consistent with the training set. The ROC curve also revealed a high diagnostic ability of circ_0004381 and circ_0017204 in predicting the early stage of PD from healthy controls. circ_0085869, circ_0004381, circ_0017204, and circ_0090668 also presented a high ability to distinguish the late stage of PD from early stage. In conclusion, circulating circRNA panel might be a potential fingerprint for predicting the early diagnosis of PD and may act as a biomarker for disease progression.


2021 ◽  
Vol 13 ◽  
Author(s):  
Tingting Du ◽  
Le Wang ◽  
Weijin Liu ◽  
Guanyu Zhu ◽  
Yingchuan Chen ◽  
...  

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the presence of α-synuclein (α-Syn)-rich Lewy bodies (LBs) and the preferential loss of dopaminergic (DA) neurons in the substantia nigra (SN) pars compacta (SNpc). However, the widespread involvement of other central nervous systems (CNS) structures and peripheral tissues is now widely documented. The onset of the molecular and cellular neuropathology of PD likely occurs decades before the onset of the motor symptoms characteristic of PD, so early diagnosis of PD and adequate tracking of disease progression could significantly improve outcomes for patients. Because the clinical diagnosis of PD is challenging, misdiagnosis is common, which highlights the need for disease-specific and early-stage biomarkers. This review article aims to summarize useful biomarkers for the diagnosis of PD, as well as the biomarkers used to monitor disease progression. This review article describes the role of α-Syn in PD and how it could potentially be used as a biomarker for PD. Also, preclinical and clinical investigations encompassing genetics, immunology, fluid and tissue, imaging, as well as neurophysiology biomarkers are discussed. Knowledge of the novel biomarkers for preclinical detection and clinical evaluation will contribute to a deeper understanding of the disease mechanism, which should more effectively guide clinical applications.


2020 ◽  
Vol 10 (4) ◽  
pp. 1541-1549
Author(s):  
Seok Jong Chung ◽  
Sangwon Lee ◽  
Han Soo Yoo ◽  
Yang Hyun Lee ◽  
Hye Sun Lee ◽  
...  

Background: Striatal dopamine deficits play a key role in the pathogenesis of Parkinson’s disease (PD), and several non-motor symptoms (NMSs) have a dopaminergic component. Objective: To investigate the association between early NMS burden and the patterns of striatal dopamine depletion in patients with de novo PD. Methods: We consecutively recruited 255 patients with drug-naïve early-stage PD who underwent 18F-FP-CIT PET scans. The NMS burden of each patient was assessed using the NMS Questionnaire (NMSQuest), and patients were divided into the mild NMS burden (PDNMS-mild) (NMSQuest score <6; n = 91) and severe NMS burden groups (PDNMS-severe) (NMSQuest score >9; n = 90). We compared the striatal dopamine transporter (DAT) activity between the groups. Results: Patients in the PDNMS-severe group had more severe parkinsonian motor signs than those in the PDNMS-mild group, despite comparable DAT activity in the posterior putamen. DAT activity was more severely depleted in the PDNMS-severe group in the caudate and anterior putamen compared to that in the PDMNS-mild group. The inter-sub-regional ratio of the associative/limbic striatum to the sensorimotor striatum was lower in the PDNMS-severe group, although this value itself lacked fair accuracy for distinguishing between the patients with different NMS burdens. Conclusion: This study demonstrated that PD patients with severe NMS burden exhibited severe motor deficits and relatively diffuse dopamine depletion throughout the striatum. These findings suggest that the level of NMS burden could be associated with distinct patterns of striatal dopamine depletion, which could possibly indicate the overall pathological burden in PD.


Author(s):  
М.М. Руденок ◽  
А.Х. Алиева ◽  
А.А. Колачева ◽  
М.В. Угрюмов ◽  
П.А. Сломинский ◽  
...  

Несмотря на очевидный прогресс, достигнутый в изучении молекулярно-генетических факторов и механизмов патогенеза болезни Паркинсона (БП), в настоящее время стало ясно, что нарушения в структуре ДНК не описывают весь спектр патологических изменений, наблюдаемых при развитии заболевания. В настоящее время показано, что существенное влияние на патогенез БП могут оказывать изменения на уровне транскриптома. В работе были использованы мышиные модели досимптомной стадии БП, поздней досимптомной и ранней симптомной (РСС) стадиями БП. Для полнотранскриптомного анализа пулов РНК тканей черной субстанции и стриатума мозга мышей использовались микрочипы MouseRef-8 v2.0 Expression BeadChip Kit («Illumina», США). Полученные данные указывают на последовательное вовлечение транскриптома в патогенез БП, а также на то, что изменения на транскриптомном уровне процессов транспорта и митохондриального биогенеза могут играть важную роль в нейродегенерации при БП уже на самых ранних этапах. Parkinson’s disease (PD) is a complex systemic disease, mainly associated with the death of dopaminergic neurons. Despite the obvious progress made in the study of molecular genetic factors and mechanisms of PD pathogenesis, it has now become clear that violations in the DNA structure do not describe the entire spectrum of pathological changes observed during the development of the disease. It has now been shown that changes at the transcriptome level can have a significant effect on the pathogenesis of PD. The authors used models of the presymptomatic stage of PD with mice decapitation after 6 hours (6 h-PSS), presymptomatic stage with decapitation after 24 hours (24 h-PSS), advanced presymptomatic (Adv-PSS) and early symptomatic (ESS) stages of PD. For whole transcriptome analysis of RNA pools of the substantia nigra and mouse striatum, the MouseRef-8 v2.0 Expression BeadChip Kit microchips (Illumina, USA) were used. As a result of the analysis of whole transcriptome data, it was shown that, there are a greater number of statistically significant changes in the tissues of the brain and peripheral blood of mice with Adv-PSS and ESS models of PD compared to 6 h-PSS and 24 h-PSS models. In general, the obtained data indicate the sequential involvement of the transcriptome in the pathogenesis of PD, as well as the fact that changes at the transcriptome level of the processes of transport and mitochondrial biogenesis can play an important role in neurodegeneration in PD at an early stage.


2021 ◽  
Vol 81 ◽  
pp. 307-311 ◽  
Author(s):  
Claudio Liguori ◽  
Valentino De Franco ◽  
Rocco Cerroni ◽  
Matteo Spanetta ◽  
Nicola Biagio Mercuri ◽  
...  

Metabolites ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Petr G. Lokhov ◽  
Dmitry L. Maslov ◽  
Steven Lichtenberg ◽  
Oxana P. Trifonova ◽  
Elena E. Balashova

A laboratory-developed test (LDT) is a type of in vitro diagnostic test that is developed and used within a single laboratory. The holistic metabolomic LDT integrating the currently available data on human metabolic pathways, changes in the concentrations of low-molecular-weight compounds in the human blood during diseases and other conditions, and their prevalent location in the body was developed. That is, the LDT uses all of the accumulated metabolic data relevant for disease diagnosis and high-resolution mass spectrometry with data processing by in-house software. In this study, the LDT was applied to diagnose early-stage Parkinson’s disease (PD), which currently lacks available laboratory tests. The use of the LDT for blood plasma samples confirmed its ability for such diagnostics with 73% accuracy. The diagnosis was based on relevant data, such as the detection of overrepresented metabolite sets associated with PD and other neurodegenerative diseases. Additionally, the ability of the LDT to detect normal composition of low-molecular-weight compounds in blood was demonstrated, thus providing a definition of healthy at the molecular level. This LDT approach as a screening tool can be used for the further widespread testing for other diseases, since ‘omics’ tests, to which the metabolomic LDT belongs, cover a variety of them.


Sign in / Sign up

Export Citation Format

Share Document