scholarly journals Near-Zero Drift and High Electromechanical Coupling Acoustic Resonators at >3.5 GHz

Author(s):  
Ahmed E. Hassanien ◽  
Ruochen Lu ◽  
Songbin Gong
Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 102
Author(s):  
Chao Gao ◽  
Yang Zou ◽  
Jie Zhou ◽  
Yan Liu ◽  
Wenjuan Liu ◽  
...  

As radio-frequency (RF) communication becomes more ubiquitous globally, film bulk acoustic resonators (FBAR) have attracted great attention for their superior performance. One of the key parameters of an FBAR, the effective electromechanical coupling coefficient (Keff2), has a great influence on the bandwidth of RF filters. In this work, we propose a feasible method to tune the Keff2 of the FBAR by etching the piezoelectric material to form a trench around the active area of the FBAR. The influence of the position of the etching trench on the Keff2 of the FBAR was investigated by 3D finite element modeling and experimental fabricating. Meanwhile, a theoretical electrical model was presented to test and verify the simulated and measured results. The Keff2 of the FBAR tended to be reduced when the distance between the edge of the top electrode and the edge of the trench was increased, but the Q value of the FBAR was not degraded. This work provides a new possibility for tuning the Keff2 of resonators to meet the requirements of different filter bandwidths.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Thomas Baron ◽  
Eric Lebrasseur ◽  
Florent Bassignot ◽  
Haixia Wang ◽  
Sylvain Ballandras ◽  
...  

Filters based on film bulk acoustic resonators (FBARs) are widely used for mobile phone applications, but they can also address wideband aerospace requirements. These devices need high electromechanical coupling coefficients to achieve large band pass filters. The piezoelectric material LiNbO3 complies with such specifications and is compatible with standard fabrication processes. In this work, simple metal—LiNbO3—metal structures have been developed to fabricate single FBAR elements directly connected to each other on a single chip. A fabrication process based on LiNbO3/silicon Au-Au bonding and LiNbO3 lapping/polishing has been developed and is proposed in this paper. Electrical measurements of these FBAR filters are proposed and commented exhibiting filters with 8% of fractional bandwidth and 3.3 dB of insertion losses. Electrical measurements show possibilities to obtain 14% of fractional bandwidth. These devices have been packaged, allowing for power handling, thermal, and ferroelectric tests, corresponding to spatial conditions.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 549-556
Author(s):  
Yajun Luo ◽  
Linwei Ji ◽  
Yahong Zhang ◽  
Minglong Xu ◽  
Xinong Zhang

The present work proposed an hourglass-type electromagnetic isolator with negative resistance (NR) shunt circuit to achieve the effective suppression of the micro-amplitude vibration response in various advanced instruments and equipment. By innovatively design of combining the displacement amplifier and the NR electromagnetic shunt circuit, the current new type of vibration isolator not only can effectively solve the problem of micro-amplitude vibration control, but also has significant electromechanical coupling effect, to obtain excellent vibration isolation performance. The design of the isolator and motion relationship is presented firstly. The electromechanical coupling dynamic model of the isolator is also given. Moreover, the optimal design of the NR electromagnetic shunt circuit and the stability analysis of the vibration isolation system are carried out. Finally, the simulation results about the transfer function and vibration responses demonstrated that the isolator has a significant isolation performance.


Sign in / Sign up

Export Citation Format

Share Document