Biological Analysis of Jeffrey Nanofluid in a Curved Channel With Heat Dissipation

2014 ◽  
Vol 13 (4) ◽  
pp. 431-437 ◽  
Author(s):  
E. N. Maraj ◽  
Noreen Sher Akbar ◽  
S. Nadeem
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Faisal Shahzad ◽  
Dumitru Baleanu ◽  
Wasim Jamshed ◽  
Kottakkaran Sooppy Nisar ◽  
Mohamed R. Eid ◽  
...  

AbstractSurvey of literature unveils that nanofluids are more efficient for heat transport in comparison to the traditional fluids. However, the enlightenment of developed techniques for the augmentation of heat transport in nanomaterials has considerable gaps and, consequently, an extensive investigation for aforementioned models is vital. The ongoing investigation aims to study the 2-D, incompressible Jeffrey nanofluid heat transference flow due to a stretchable surface. Furthermore, the effect of dispersion of graphene nanoparticles in base liquid ethylene glycol (EG) on the performance of flow and heat transport using the Tawari-Das model in the existence of Ohmic heating (electroconductive heating) and viscous heat dissipation is contemplated. The boundary-layer PDEs are reconstituted as ODEs employing appropriate similarity transformation. Keller-Box Method (KBM) is utilized to determine the numerical findings of the problem. Graphene conducts heat greater in rate than all of the other materials and it is a good conductor of electrical energy. Graphene/EG nanofluid is employed to look out the parametric aspects of heat transport flow, drag coefficient, and heat transference rate phenomena with the aid of graphs and tables. The numerical outcomes indicate that concentration and magnetic field abate the shear stresses for the nanofluid. An increase of Graphene nanoparticle volume fraction parameter can boost the heat transport rate. The effect of Prandtl Number is to slow down the rate of heat transport as well as decelerate the temperature. Additionally, the rate of heat transportation augments on a surface under Deborah's number. Results indicate that the temperature of the graphene-EG nanofluid is greater than the convectional fluid hence graphene-EG nanofluid gets more important in the cooling process, biosensors and drug delivery than conventional fluids.


Author(s):  
Charles M. Sparacino ◽  
Patricia A. Hyldburg ◽  
Thomas J. Hughes
Keyword(s):  

2021 ◽  
Vol 33 (1) ◽  
pp. 012029
Author(s):  
Stefan Polenz ◽  
Christian Kolbe ◽  
Florian Bittner ◽  
Elena López ◽  
Frank Brückner ◽  
...  

2021 ◽  
Vol 35 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Keyu Gong ◽  
Yong Cao ◽  
Yu Feng ◽  
Ying Zhang ◽  
Jiang Qin

Author(s):  
Ian Kearney ◽  
Stephen Brink

Abstract The shift in power conversion and power management applications to thick copper clip technologies and thinner silicon dies enable high-current connections (overcoming limitations of common wire bond) and enhance the heat dissipation properties of System-in-Package solutions. Powerstage innovation integrates enhanced gate drivers with two MOSFETs combining vertical current flow with a lateral power MOSFET. It provides a low on-resistance and requires an extremely low gate charge with industry-standard package outlines - a combination not previously possible with existing silicon platforms. These advancements in both silicon and 3D Multi-Chip- Module packaging complexity present multifaceted challenges to the failure analyst. The various height levels and assembly interfaces can be difficult to deprocess while maintaining all the critical evidence. Further complicating failure isolation within the system is the integration of multiple chips, which can lead to false positives. Most importantly, the discrete MOSFET all too often gets overlooked as just a simple threeterminal device leading to incorrect deductions in determining true root cause. This paper presents the discrete power MOSFET perspective amidst the competing forces of the system-to-board-level failure analysis. It underlines the requirement for diligent analysis at every step and the importance as an analyst to contest the conflicting assumptions of challenging customers. Automatic Test Equipment (ATE) data-logs reported elevated power MOSFET leakage. Initial assumptions believed a MOSFET silicon process issue existed. Through methodical anamnesis and systematic analysis, the true failure was correctly isolated and the power MOSFET vindicated. The authors emphasize the importance of investigating all available evidence, from a macro to micro 3D package perspective, to achieve the bona fide path forward and true root cause.


Sign in / Sign up

Export Citation Format

Share Document