A Three Dimensional Scalar Potential Field Solution and its Application to the Turbine Generator End Region

1981 ◽  
Vol PAS-100 (5) ◽  
pp. 2302-2310 ◽  
Author(s):  
K. Davey ◽  
E. King
2021 ◽  
Vol 36 (04) ◽  
pp. 2150021
Author(s):  
M. Farasat Shamir ◽  
Adnan Malik ◽  
G. Mustafa

This work aims to investigate the wormhole solutions in the background of [Formula: see text] theory of gravity, where [Formula: see text] is Ricci scalar, [Formula: see text] is scalar potential, and [Formula: see text] is the kinetic term. We consider spherically symmetric static space–time for exploring the wormhole geometry with anisotropic fluid. For our current analysis, we consider a particular equation of state parameter to study the behavior of traceless fluid and examine the physical behavior of energy density and pressure components. Furthermore, we also choose a particular shape function and explore the energy conditions. It can be noticed that energy conditions are violated for both shape functions. The violation of energy conditions indicates the existence of exotic matter and wormhole. Therefore, it can be concluded that our results are stable and realistic. The interesting feature of this work is to show two- and three-dimensional plotting for the analysis of wormhole geometry.


2013 ◽  
Vol 84 (9) ◽  
pp. 487-491
Author(s):  
V. N. Antipov ◽  
I. Yu. Kruchinina ◽  
A. D. Grozov

Author(s):  
Jun Tang ◽  
Jiayi Sun ◽  
Cong Lu ◽  
Songyang Lao

Multi-unmanned aerial vehicle trajectory planning is one of the most complex global optimum problems in multi-unmanned aerial vehicle coordinated control. Results of recent research works on trajectory planning reveal persisting theoretical and practical problems. To mitigate them, this paper proposes a novel optimized artificial potential field algorithm for multi-unmanned aerial vehicle operations in a three-dimensional dynamic space. For all purposes, this study considers the unmanned aerial vehicles and obstacles as spheres and cylinders with negative electricity, respectively, while the targets are considered spheres with positive electricity. However, the conventional artificial potential field algorithm is restricted to a single unmanned aerial vehicle trajectory planning in two-dimensional space and usually fails to ensure collision avoidance. To deal with this challenge, we propose a method with a distance factor and jump strategy to resolve common problems such as unreachable targets and ensure that the unmanned aerial vehicle does not collide into the obstacles. The method takes companion unmanned aerial vehicles as the dynamic obstacles to realize collaborative trajectory planning. Besides, the method solves jitter problems using the dynamic step adjustment method and climb strategy. It is validated in quantitative test simulation models and reasonable results are generated for a three-dimensional simulated urban environment.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
N. Tazimi ◽  
A. Ghasempour

In this study, we investigate the relativistic Klein-Gordon equation analytically for the Deng-Fan potential and Hulthen plus Eckart potential under the equal vector and scalar potential conditions. Accordingly, we obtain the energy eigenvalues of the molecular systems in different states as well as the normalized wave function in terms of the generalized Laguerre polynomials function through the NU method, which is an effective method for the exact solution of second-order linear differential equations.


2020 ◽  
Vol 102 (2) ◽  
Author(s):  
Nicholas C. White ◽  
Sandra M. Troian ◽  
Jeffrey B. Jewell ◽  
Curt J. Cutler ◽  
Sheng-wey Chiow ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document