Pulsed Vacuum Surface Flashover Characteristics of $ \hbox{TiO}_{2}/\hbox{Epoxy}$ Nano–Micro Composites

2012 ◽  
Vol 40 (1) ◽  
pp. 68-77 ◽  
Author(s):  
Yong-Hong Cheng ◽  
Zeng-Bin Wang ◽  
Kai Wu
Keyword(s):  
Author(s):  
M.P. Wilson ◽  
R.A. Fouracre ◽  
M.J. Given ◽  
S.J. MacGregor ◽  
I.V. Timoshkin ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 750
Author(s):  
Jixing Sun ◽  
Sibo Song ◽  
Xiyu Li ◽  
Yunlong Lv ◽  
Jiayi Ren ◽  
...  

A conductive metallic particle in a gas-insulated metal-enclosed system can charge through conduction or induction and move between electrodes or on insulating surfaces, which may lead to breakdown and flashover. The charge on the metallic particle and the charging time vary depending on the spatial electric field intensity, the particle shape, and the electrode surface coating. The charged metallic particle can move between the electrodes under the influence of the spatial electric field, and it can discharge and become electrically conductive when colliding with the electrodes, thus changing its charge. This process and its factors are mainly affected by the coating condition of the colliding electrode. In addition, the interface characteristics affect the particle when it is near the insulator. The charge transition process also changes due to the electric field strength and the particle charging state. This paper explores the impact of the coating material on particle charging characteristics, movement, and discharge. Particle charging, movement, and charge transfer in DC, AC, and superimposed electric fields are summarized. Furthermore, the effects of conductive particles on discharge characteristics are compared between coated and bare electrodes. The reviewed studies demonstrate that the coating can effectively reduce particle charge and thus the probability of discharge. The presented research results can provide theoretical support and data for studying charge transfer theory and design optimization in a gas-insulated system.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 333
Author(s):  
Pedro Llovera-Segovia ◽  
Gustavo Ortega-Braña ◽  
Vicente Fuster-Roig ◽  
Alfredo Quijano-López

Piezoelectric polymer cellular films have been developed and improved in the past decades. These piezoelectric materials are based on the polarization of the internal cells by means of induced discharges in the gas inside the cells. Internal discharges are driven by an external applied electric field. With this polarization method, cellular polypropylene (PP) polymers exhibit a high piezoelectric coefficient d33 and have been investigated because of their low dielectric polarization, high resistivity, and flexibility. Charging polymers foams is normally obtained by applying a corona discharge to the surface with a single tip electrode-plane arrangement or a triode electrode, which consists of a tip electrode-plane structure with a controlled potential intermediate mesh. Corona charging allows the surface potential of the sample to rise without breakdown or surface flashover. A charging method has been developed without corona discharge, and this has provided good results. In our work, a method has been developed to polarize polypropylene foams by applying an insulated high-voltage electrode on the surface of the sample. The dielectric layer in series with the sample allows for a high internal electric field to be reached in the sample but avoids dielectric breakdown of the sample. The distribution of the electric field between the sample and the dielectric barrier has been calculated. Experimental results with three different electrodes present good outcome in agreement with the calculations. High d33 constants of about 880 pC/N have been obtained. Mapping of the d33 constant on the surface has also been carried out showing good homogeneity on the area under the electrode.


Author(s):  
G. F. Edmiston ◽  
A. A. Neuber ◽  
J. T. Krile ◽  
L. McQuage ◽  
H. Krompholz
Keyword(s):  

2016 ◽  
Vol 44 (1) ◽  
pp. 85-92 ◽  
Author(s):  
Chenyang Liu ◽  
Ying Zheng ◽  
Pei Yang ◽  
Xiaoquan Zheng ◽  
Ying Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document