Effect of surface morphology and crystal orientations on fracture strength of thin film (110) single crystal silicon

Author(s):  
A. Uesugi ◽  
Y. Hirai ◽  
K. Sugano ◽  
T. Tsuchiya ◽  
O. Tabata
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuki Tsuruma ◽  
Emi Kawashima ◽  
Yoshikazu Nagasaki ◽  
Takashi Sekiya ◽  
Gaku Imamura ◽  
...  

AbstractPower devices (PD) are ubiquitous elements of the modern electronics industry that must satisfy the rigorous and diverse demands for robust power conversion systems that are essential for emerging technologies including Internet of Things (IoT), mobile electronics, and wearable devices. However, conventional PDs based on “bulk” and “single-crystal” semiconductors require high temperature (> 1000 °C) fabrication processing and a thick (typically a few tens to 100 μm) drift layer, thereby preventing their applications to compact devices, where PDs must be fabricated on a heat sensitive and flexible substrate. Here we report next-generation PDs based on “thin-films” of “amorphous” oxide semiconductors with the performance exceeding the silicon limit (a theoretical limit for a PD based on bulk single-crystal silicon). The breakthrough was achieved by the creation of an ideal Schottky interface without Fermi-level pinning at the interface, resulting in low specific on-resistance Ron,sp (< 1 × 10–4 Ω cm2) and high breakdown voltage VBD (~ 100 V). To demonstrate the unprecedented capability of the amorphous thin-film oxide power devices (ATOPs), we successfully fabricated a prototype on a flexible polyimide film, which is not compatible with the fabrication process of bulk single-crystal devices. The ATOP will play a central role in the development of next generation advanced technologies where devices require large area fabrication on flexible substrates and three-dimensional integration.


1999 ◽  
Vol 119 (2) ◽  
pp. 67-72 ◽  
Author(s):  
Taeko Ando ◽  
Tetsuo Yoshioka ◽  
Mitsuhiro Shikida ◽  
Kazuo Sato ◽  
Tatsuo Kawabata

2021 ◽  
Author(s):  
Yuki Tsuruma ◽  
Emi Kawashima ◽  
Yoshikazu Nagasaki ◽  
Takashi Sekiya ◽  
Gaku Imamura ◽  
...  

Abstract Power devices (PD) are ubiquitous elements of the modern electronics industry that must satisfy the rigorous and diverse demands for robust power conversion systems that are essential for emerging technologies including Internet of Things (IoT), mobile electronics, and wearable devices. However, conventional PDs based on “bulk” and “single-crystal” semiconductors require high temperature (>1000°C) fabrication processing and a thick (typically a few tens to 100 μm) drift layer1, thereby preventing their applications to compact devices2, where PDs must be fabricated on a heat sensitive and flexible substrate. Here we report next-generation PDs based on “thin-films” of “amorphous” oxide semiconductors with the performance exceeding the silicon limit (a theoretical limit for a PD based on bulk single-crystal silicon3). The breakthrough was achieved by the creation of an ideal Schottky interface without Fermi-level pinning at the interface, resulting in low specific on-resistance Ron,sp (<1×10-4 Ωcm2) and high breakdown voltage VBD (~100 V). To demonstrate the unprecedented capability of the amorphous thin-film oxide power devices (ATOPs), we successfully fabricated a prototype on a flexible polyimide film, which is not compatible with the fabrication process of bulk single-crystal devices. The ATOP will play a central role in the development of next generation advanced technologies where devices require large area fabrication on flexible substrates and three-dimensional integration.


2006 ◽  
Vol 100 (1) ◽  
pp. 013708 ◽  
Author(s):  
Hao-Chih Yuan ◽  
Zhenqiang Ma ◽  
Michelle M. Roberts ◽  
Donald E. Savage ◽  
Max G. Lagally

2021 ◽  
Vol 1165 ◽  
pp. 113-130
Author(s):  
Romyani Goswami

In photovoltaic system the major challenge is the cost reduction of the solar cell module to compete with those of conventional energy sources. Evolution of solar photovoltaic comprises of several generations through the last sixty years. The first generation solar cells were based on single crystal silicon and bulk polycrystalline Si wafers. The single crystal silicon solar cell has high material cost and the fabrication also requires very high energy. The second generation solar cells were based on thin film fabrication technology. Due to low temperature manufacturing process and less material requirement, remarkable cost reduction was achieved in these solar cells. Among all the thin film technologies amorphous silicon thin film solar cell is in most advanced stage of development and is commercially available. However, an inherent problem of light induced degradation in amorphous silicon hinders the higher efficiency in this kind of cell. The third generation silicon solar cells are based on nano-crystalline and nano-porous materials. Hydrogenated nanocrystalline silicon (nc-Si:H) is becoming a promising material as an absorber layer of solar cell due to its high stability with high Voc. It is also suggested that the cause of high stability and less degradation of certain nc-Si:H films may be due to the improvement of medium range order (MRO) of the films. During the last ten years, organic, polymer, dye sensitized and perovskites materials are also attract much attention of the photovoltaic researchers as the low budget next generation PV material worldwide. Although most important challenge for those organic solar cells in practical applications is the stability issue. In this work nc-Si:H films are successfully deposited at a high deposition rate using a high pressure and a high power by Radio Frequency Plasma Enhanced Chemical Vapor Deposition (RF PECVD) technique. The transmission electron microscopy (TEM) studies show the formations of distinct nano-sized grains in the amorphous tissue with sharp crystalline orientations. Light induced degradation of photoconductivity of nc-Si:H materials have been studied. Single junction solar cells and solar module were successfully fabricated using nanocrystalline silicon as absorber layer. The optimum cell is 7.1 % efficient initially. Improvement in efficiency can be achieved by optimizing the doped layer/interface and using Ag back contact.


Sign in / Sign up

Export Citation Format

Share Document