scholarly journals Multiagent-Based Reactive Power Sharing and Control Model for Islanded Microgrids

2016 ◽  
Vol 7 (3) ◽  
pp. 1232-1244 ◽  
Author(s):  
Feixiong Chen ◽  
Minyou Chen ◽  
Qiang Li ◽  
Kaikai Meng ◽  
Josep M. Guerrero ◽  
...  
2019 ◽  
Vol 10 (2) ◽  
pp. 1880-1888 ◽  
Author(s):  
Kai Wang ◽  
Xibo Yuan ◽  
Yiwen Geng ◽  
Xiaojie Wu

Author(s):  
Bharat Modi ◽  
Mahendra Lalwani

In the lock-down period, the islanding mode of operation with droop controllers has several advantages in the alternating current grid. This study focuses on an improvised droop controller. It consists of an advanced filtering segment embedded with a conventional droop controller, which overcomes the drawback of droop controllers of the non-handling of non-linear loads in an ordinary situation. A selective harmonic elimination technique in grid-connected mode and lock-down mode and an advanced filter embedded with droop control are used so that the proposed controller can also work as an Active Harmonic Filter (AHF). The simulation results in different cases show that the proposed controller can control the active and reactive power in the lock-down period as well as the harmonics in the normal period up to an extent.


Author(s):  
Benling Hu ◽  
Le Yang ◽  
Chan Wei ◽  
Min Luo

ABSTRACT Objective: To evaluate the management mode for the prevention and control of coronavirus 2019 (COVID-19) transmission utilized at a general hospital in Shenzhen, China, with the aim to maintain the normal operation of the hospital. Methods: From January 2, 2020 to April 23, 2020, Hong Kong–Shenzhen Hospital, a tertiary hospital in Shenzhen, has operated a special response protocol named comprehensive pandemic prevention and control model, which mainly includes six aspects: 1) human resource management; 2) equipment management; 3) logistics management; 4) cleaning, disinfection and process reengineering; 5) environment layout; 6) and training and assessment. The detail of every aspect was described and its efficiency was evaluated. Results: A total of 198,802 patients were received. Of those, 10,821 were hospitalized; 26,767 were received by the emergency department and fever clinics; 288 patients were admitted for observation with fever; and 324 were admitted as suspected cases for isolation. Under the protocol of comprehensive pandemic prevention and control model, no case of hospital-acquired infection with COVID-19 occurred among the inpatients or staff. Conclusion: The present comprehensive response model may be useful in large public health emergencies to ensure appropriate management and protect the health and life of individuals.


2021 ◽  
pp. 0309524X2110241
Author(s):  
Nindra Sekhar ◽  
Natarajan Kumaresan

To overcome the difficulties of extending the main power grid to isolated locations, this paper proposes the local installation of a combination of three renewable energy sources, namely, a wind driven DFIG, a solar PV unit, a biogas driven squirrel-cage induction generator (SCIG), and an energy storage battery system. In this configuration one bi-directional SPWM inverter at the rotor side of the DFIG controls the voltage and frequency, to maintain them constant on its stator side, which feeds the load. The PV-battery also supplies the load, through another inverter and a hysteresis controller. Appropriately adding a capacitor bank and a DSTATCOM has also been considered, to share the reactive power requirement of the system. Performance of various modes of operation of this coordinated scheme has been studied through simulation. All the results and relevant waveforms are presented and discussed to validate the successful working of the proposed system.


Author(s):  
Chethan Parthasarathy ◽  
Hossein Hafezi ◽  
Hannu Laaksonen

AbstractLithium-ion battery energy storage systems (Li-ion BESS), due to their capability in providing both active and reactive power services, act as a bridging technology for efficient implementation of active network management (ANM) schemes for land-based grid applications. Due to higher integration of intermittent renewable energy sources in the distribution system, transient instability may induce power quality issues, mainly in terms of voltage fluctuations. In such situations, ANM schemes in the power network are a possible solution to maintain operation limits defined by grid codes. However, to implement ANM schemes effectively, integration and control of highly flexible Li-ion BESS play an important role, considering their performance characteristics and economics. Hence, in this paper, an energy management system (EMS) has been developed for implementing the ANM scheme, particularly focusing on the integration design of Li-ion BESS and the controllers managing them. Developed ANM scheme has been utilized to mitigate MV network issues (i.e. voltage stability and adherence to reactive power window). The efficiency of Li-ion BESS integration methodology, performance of the EMS controllers to implement ANM scheme and the effect of such ANM schemes on integration of Li-ion BESS, i.e. control of its grid-side converter (considering operation states and characteristics of the Li-ion BESS) and their coordination with the grid side controllers have been validated by means of simulation studies in the Sundom smart grid network, Vaasa, Finland.


Sign in / Sign up

Export Citation Format

Share Document