Omni-directional guided wave transducer arrays for the rapid inspection of large areas of plate structures

Author(s):  
P.D. Wilcox
Author(s):  
Pietro Giannelli ◽  
Andrea Bulletti ◽  
Maurizio Granato ◽  
Giovanni Frattini ◽  
Giacomo Calabrese ◽  
...  

2020 ◽  
Vol 10 (12) ◽  
pp. 4360
Author(s):  
Junpil Park ◽  
Jaesun Lee ◽  
Zong Le ◽  
Younho Cho

The safety diagnostic inspection of large plate structures, such as nuclear power plant containment liner plates and aircraft wings, is an important issue directly related to the safety of life. This research intends to present a more quantitative defect imaging in the structural health monitoring (SHM) technique by using a wide range of diagnostic techniques using guided ultrasound. A noncontact detection system was applied to compensate for such difficulties because direct access inspection is not possible for high-temperature and massive areas such as nuclear power plants and aircraft. Noncontact systems use unstable pulse laser and air-coupled transducers. Automatic detection systems were built to increase inspection speed and precision and the signal was measured. In addition, a new Difference Hilbert Back Projection (DHB) algorithm that can replace the reconstruction algorithm for the probabilistic inspection of damage (RAPID) algorithm used for imaging defects has been successfully applied to quantitative imaging of plate structure defects. Using an automatic detection system, the precision and detection efficiency of data collection has been greatly improved, and the same results can be obtained by reducing errors in experimental conditions that can occur in repeated experiments. Defects were made in two specimens, and comparative analysis was performed to see if each algorithm can quantitatively represent defects in multiple defects. The new DHB algorithm presented the possibility of observing and predicting the growth direction of defects through the continuous monitoring system.


2016 ◽  
Vol 28 (9) ◽  
pp. 1211-1220 ◽  
Author(s):  
Pabitro Ray ◽  
Prabhu Rajagopal ◽  
Balaji Srinivasan ◽  
Krishnan Balasubramaniam

Harnessing of ultrasonic guided waves confined in local features such as bends and welds, known as feature-guided waves, has emerged as a promising technique for non-destructive testing and structural health monitoring of industrial and aerospace structures. This article introduces a fiber Bragg grating based technique which uses feature-guided waves to detect anomalies or defects in plate structures with transverse bends. We are able to obtain good consistency between simulation and experimental results, both in the case of defect-free bent plates and those with transverse defects. Such results establish fiber Bragg gratings as a viable alternative to conventional techniques for structural health monitoring of bent plates.


2009 ◽  
Vol 113 (1144) ◽  
pp. 417-427 ◽  
Author(s):  
F. Yan ◽  
J. L. Rose

Abstract An ultrasonic guided wave technique based on time delay comb transducers is introduced for aircraft inspection. It is demonstrated that for isotropic plate structures the time delay comb transducers with appropriate excitation are capable of performing discontinuity detections without knowing the precise isotropic material properties of the objects being inspected. Fibre-reinforced composite plates are also considered. The wave skew effects are investigated using both the slowness curve and the Poynting vector. A composite inspection technique that takes advantage of the skew effects is proposed. Using time delay comb transducers to excite the guided wave modes with different skew angles, the proposed technique is capable of scanning the composite plate in different directions without moving or rotating the transducers. By contrast with the applications in the isotropic cases, knowledge of the material properties and other necessary information that is needed to produce dispersion curves is generally required. Experimental results are provided as a validation of the proposed techniques.


Sign in / Sign up

Export Citation Format

Share Document