scholarly journals High-Precision Noncontact Guided Wave Tomographic Imaging of Plate Structures Using a DHB Algorithm

2020 ◽  
Vol 10 (12) ◽  
pp. 4360
Author(s):  
Junpil Park ◽  
Jaesun Lee ◽  
Zong Le ◽  
Younho Cho

The safety diagnostic inspection of large plate structures, such as nuclear power plant containment liner plates and aircraft wings, is an important issue directly related to the safety of life. This research intends to present a more quantitative defect imaging in the structural health monitoring (SHM) technique by using a wide range of diagnostic techniques using guided ultrasound. A noncontact detection system was applied to compensate for such difficulties because direct access inspection is not possible for high-temperature and massive areas such as nuclear power plants and aircraft. Noncontact systems use unstable pulse laser and air-coupled transducers. Automatic detection systems were built to increase inspection speed and precision and the signal was measured. In addition, a new Difference Hilbert Back Projection (DHB) algorithm that can replace the reconstruction algorithm for the probabilistic inspection of damage (RAPID) algorithm used for imaging defects has been successfully applied to quantitative imaging of plate structure defects. Using an automatic detection system, the precision and detection efficiency of data collection has been greatly improved, and the same results can be obtained by reducing errors in experimental conditions that can occur in repeated experiments. Defects were made in two specimens, and comparative analysis was performed to see if each algorithm can quantitatively represent defects in multiple defects. The new DHB algorithm presented the possibility of observing and predicting the growth direction of defects through the continuous monitoring system.

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2536 ◽  
Author(s):  
Jian He ◽  
Yongfei Guo ◽  
Hangfei Yuan

Efficient ship detection is essential to the strategies of commerce and military. However, traditional ship detection methods have low detection efficiency and poor reliability due to uncertain conditions of the sea surface, such as the atmosphere, illumination, clouds and islands. Hence, in this study, a novel ship target automatic detection system based on a modified hypercomplex Flourier transform (MHFT) saliency model is proposed for spatial resolution of remote-sensing images. The method first utilizes visual saliency theory to effectively suppress sea surface interference. Then we use OTSU methods to extract regions of interest. After obtaining the candidate ship target regions, we get the candidate target using a method of ship target recognition based on ResNet framework. This method has better accuracy and better performance for the recognition of ship targets than other methods. The experimental results show that the proposed method not only accurately and effectively recognizes ship targets, but also is suitable for spatial resolution of remote-sensing images with complex backgrounds.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Mauro Cappelli ◽  
Francesco Cordella ◽  
Francesco Bertoncini ◽  
Marco Raugi

Guided wave (GW) testing is regularly used for finding defect locations through long-range screening using low-frequency waves (from 5 to 250 kHz). By using magnetostrictive sensors, some issues, which usually limit the application to nuclear power plants (NPPs), can be fixed. The authors have already shown the basic theoretical background and simulation results concerning a real steel pipe, used for steam discharge, with a complex structure. On the basis of such theoretical framework, a new campaign has been designed and developed on the same pipe, and the obtained experimental results are now here presented as a useful benchmark for the application of GWs as nondestructive techniques. Experimental measures using a symmetrical probe and a local probe in different configurations (pulse-echo and pitch-catch) indicate that GW testing with magnetostrictive sensors can be reliably applied to long-term monitoring of NPPs components.


2006 ◽  
Vol 321-323 ◽  
pp. 441-444
Author(s):  
Heung Seop Eom ◽  
Sa Hoe Lim ◽  
Jae Hee Kim ◽  
Young H. Kim ◽  
Hak Joon Kim ◽  
...  

This study was aimed at developing an effective method and a system for on-line health monitoring of pipes in nuclear power plants by using ultrasonic guided waves. For this purpose we developed a multi-channel ultrasonic guided wave system for a long-range inspection of pipes and a few techniques which can effectively find defects in pipes. To validate the developed system we performed a series of experiments and analyzed the results.


Author(s):  
Andrei Gribok ◽  
Vivek Agarwal

This paper describes the application of independent component analysis (ICA) to detect corrosion-induced defects in commercial nuclear power plants. This paper analyzes the applicability and benefits of ICA when applied to guided wave (GW) technology to detect corrosion in secondary circuits, as well as studying the potential for expanding the range of GW technology to include complex geometries and piping components. The ultrasonic GWs can inspect long stretches of straight piping; however, more complex geometries that include elbows, welds, and tees are causing spurious reflections and coherent noise, which significantly decreases the sensitivity of the GW systems. The potential of ICA to improve detection sensitivity is analyzed and practical recommendations are provided. It is demonstrated on GW data collected at one of the commercial nuclear power plants that ICA, under certain conditions, is capable of separating different coherent noise components and has potential for improving signal-to-noise ratio.


Author(s):  
Chiaki Kino

The flow-induced vibration of a pipe is an important issue in various engineering fields, and this phenomenon is widely observed in nuclear power plants. Although turbulent structures play important roles in the velocity and pressure fields in a pipe, only a few studies have been conducted on the turbulent flow on an oscillating wall. In this study, direct numerical simulations were conducted to establish a large eddy simulation model for a turbulent flow on an oscillating wall and scrutinize the energy transfer between the grid scale (GS) and sub-grid scale (SGS). Although energy is generally transferred from the GS to SGS (forward scatter), it is likely that energy is transferred from the SGS to GS (backward scatter) under specific conditions. The present numerical results indicated that backward scatter exists in the production term in the case of a static wavy wall. On the other hand, such backward scatter could not be observed in the case of an oscillating wall. It is well known that separated flows and backward flows are generated behind the crest. Stronger backward flows accelerate the main flow and enhance the velocity gradients in a wide range behind the crest. In the case of an oscillating wall, the development of separated flow is immature because the shape of the wall is not fixed. Eventually, the backward scatter is deemed to be suppressed.


2006 ◽  
Vol 321-323 ◽  
pp. 743-746 ◽  
Author(s):  
Jong Ho Park ◽  
Joon Hyun Lee ◽  
Gyeong Chul Seo ◽  
Sang Woo Choi

In carbon steel pipes of nuclear power plants, local wall thinning may result from erosion-corrosion or flow-accelerated corrosion(FAC) damage. Local wall thinning is one of the major causes for the structural fracture of these pipes. Therefore, assessment of local wall thinning due to corrosion is an important issue in nondestructive evaluation for the integrity of nuclear power plants. In this study, laser-generated ultrasound technique was employed to evaluate local wall thinning due to corrosion. Guided waves were generated in the thermoelastic regime using a Q-switched pulsed Nd:YAG laser with a linear slit array. . In this paper, time-frequency analysis of ultrasonic waveforms using wavelet transform allowed the identification of generated guided wave modes by comparison with the theoretical dispersion curves. Modes conversion and group velocity were employed to detect thickness reduction.


2006 ◽  
Vol 321-323 ◽  
pp. 780-783 ◽  
Author(s):  
Yong Moo Cheong ◽  
Hyun Kyu Jung ◽  
Young Suk Kim

The leakage of a pipe in nuclear power plants is a significant concern from the point of view of nuclear safety. Because of the geometrical complexity of a pipe and an inaccessibility due to a high radiation, it is difficult to inspect it by the conventional ultrasonic methods. The guided ultrasonic method can be useful for the inspection of a pipe in those harsh environments. Based on the analysis of the dispersion curves for a pipe, a torsional vibration mode, T(0,1) was selected for the detection of cracks. The T(0,1) mode has many advantages, such as a higher sensitivity for a crack from the viewpoint of its non-dispersion characteristics and its wave structure. The torsional mode can be generated by using either an array of electromagnetic acoustic transducers (EMATs) technique or a magnetostrictive sensor technique. The detectability of the cracks was estimated through a series of experiments with artificial notches on a pipe.


Author(s):  
Yukio Takahashi ◽  
Bilal Dogan ◽  
David Gandy

Failure under creep-fatigue interaction is receiving increasing interest due to an increased number of start-up and shut-down in fossil power generation plants as well as development of newer nuclear power plants employing low-pressure coolant. These situations have promoted the development of various approaches for evaluating its significance. However, most of them are fragment and rather limited in terms of materials and test conditions they covered. Therefore applicability of the proposed approaches to different materials or even different temperatures is uncertain in many cases. The present work was conducted in order to evaluate and compare the representative approaches used in the prediction of failure life under creep-fatigue conditions as well as their modifications, by systematically applying them to available test data on a wide range of materials which have been used or are planned to be used in various types of power generation plants. The following observations have been made from this exercise. (i) Time fraction model has a tendency to be unconservative in general, especially at low temperature and small strain range. Because of the large scatter of the total damage, this shortcoming would be difficult to cover by the consideration of creep-fatigue interaction in a fixed manner. (ii) Classical ductility exhaustion model showed a common tendency to be overly conservative in many situations, especially at small strain ranges. (iii) The modified ductility exhaustion model based on the re-definition of creep damage showed improved predictability with a slightly unconservative tendency. (iv) Energy-based ductility exhaustion model developed in this study seems to show the best predictability among the four procedures in an overall sense although some dependency on strain range and materials was observed.


Author(s):  
Francesco Cordella ◽  
Mauro Cappelli ◽  
Francesco Bertoncini

Abstract Guided waves testing allows a long-range screening in pipes of different types and represents an effective and powerful non-destructing technique for defect detections using a limited number of points of measures. This kind of testing hence represents an appealing technique not only for the Oil and Gas industries but also for the Nuclear Industry, in particular regarding the Structural Health Monitoring of Nuclear Power Plants components. Another point of strength of this technique is that it can be applied in different configurations as the pulse-echo (the same probe is used both for transmission and signal receiving) or the pitch-catch (two symmetric probes are used one for the signal transmission and the second one for the signal receiving). In this way, the guided wave testing with magnetostrictive sensors can be reliably used for the short and long-term monitoring of Nuclear Power Plants components. The objective of this paper is to establish a strong theoretical background to pave the way for a robust experimental investigation. In particular, after the characterization through a general theoretical analysis, the focus is on a real steam discharge pipe with a high mechanical complexity used for many years in a research facility and now dismissed. The experimental method applied is the pitch-catch configuration of two magnetostrictive sensors. Preliminary experimental results conducted on a real complex steam discharge pipe are consistent with the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document